Karbon İyonlarının Beyindeki Tümör Bölgesinde Enerji Depolanmasının Monte Carlo Yöntemiyle İncelenmesi

Ağır iyon terapisi, birçok tümörün (kafa, boyun, akciğer tümörü vb.) tedavisi için geleneksel fotonterapisine kıyasla yarar sağlamaktadır. Günümüzde, protonlar ve karbon iyonlarının yanı sıra tedavi içinyeni iyon demetlerinden istifade edilmeye yönelik artan bir ilgi bulunmaktadır. Monte Carlosimülasyonu, ağır iyon tedavisinin doğru özelliklerini elde etmek için önemli bir yaklaşımdır. Radyoterapiçalışmalarında doz dağılımlarını belirlemek için Monte Carlo simülasyonları yaygın olarakkullanılmaktadır. Bu simülasyonlar, özellikle enerji depolanmalarının uzaysal modelinin yanı sıra bağılbiyolojik etkinliği anlamak için de önemli bir rol oynamaktadır. Bu çalışmada, insan beyin tümörü farklıkarbon demet enerjileriyle ışınlanmıştır (210 MeV/u, 230 MeV/u, 250 MeV/u, 270 MeV/u, 290 MeV/ukarbon demeti). Snyder’ın kafa modeline gönderilen karbon iyonu demeti, MCNPX2.7.0 koduyla simüleedilmiştir. Farklı enerjili karbon iyonları için hedef bölgedeki enerji depolanmaları Monte Carlometoduyla hesaplandı. Hesaplamalarda, hedef beyin bölgesindeki enerji birikimlerini hesaplamak içingrafiksel örgü hesabı kullanılmıştır.

Investigation of Energy Deposition in the Tumor Region Using the Carbon Ions by Monte Carlo Method

Heavy ion therapy provides benefits for many tumor (head, neck, lung tumor, e.g.) treatments compared to conventional photon therapy. Nowadays there is a rising interest towards exploiting new ion beams for therapy besides protons and carbon ions. Monte Carlo simulation was an important approach to obtain accurate characteristics of heavy ion therapy. Monte Carlo simulations are widely used to determine dose distributions in radiotherapy studies. These simulations also play an important role in recognizing the spatial pattern of energy depositions as well as the relative biological activity. In this work, the human brain tumor was irradiated with a different energetic carbon beams (for 210 MeV/u, 230 MeV/u, 250 MeV/u, 270 MeV/u, 290 MeV/u carbon beam). The incident beam of carbon ion on the Snyder’s head model was simulated with MCNPX2.7.0 code. Energy depositions in the target region were calculated by the Monte Carlo method for different energetic carbon ions. In calculations, mesh tally was used to calculate energy depositions in the target brain area.

___

  • Combs, S.E., et al., 2013. Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base. Acta Oncologica, 52(7), 1504–1509.
  • Durante M. and Paganetti H. 2016. Nuclear physics in particle therapy: a review, Reports on Progress in Physics, 79(9), 096702.
  • Glowa et al., 2017. Carbon ion radiotherapy: impact of tumor differentiation on local control in experimental prostate carcinomas. Radiation Oncology, 12(1), 174.
  • IAEA TRS 461, 2008. Relative biological effectiveness in ion beam therapy, technical reports series no. 461, Internatıonal Atomic Energy Agency, VIENNA
  • ICRU Report 63, 2000. Nuclear Data for Neutron and Proton Radiotherapy and for Radiation Protection. International Committee on Radiation Units and Measurements, Bethesda, MD
  • Johnson, R. P., 2017. Review of medical radiography and tomography with proton beams. Reports on Progress in Physics, 81(1), 016701.
  • Knäusl, B., et al., 2016. Can particle beam therapy be improved using helium ions? – a planning study focusing on pediatric patients. Acta Oncologica, 55(6), 751-759.
  • Mein, S., et al., 2018. FRoG—A New Calculation Engine for Clinical Investigations with Proton and Carbon Ion Beams at CNAO. Cancers (Basel). 10(11), 395.
  • Park, S. H., Kang, J. O., 2011. Basics of particle therapy I: physics. Radiation Oncology Journal, 29(3), 135-146. Pelowitz, D. B., 2011. MCNPX User’s Manual. Version 2.7.0, Los Alamos National Laboratory, LA-CP-11- 00438.
  • Rieken, S., et al., 2012. Proton and carbon ion radiotherapy for primary brain tumors delivered with active raster scanning at the Heidelberg Ion Therapy Center (HIT): early treatment results and study concepts. Radiation Oncology, 7(41).
  • Resch, A. F., Fuchs, H. and Georg, D., 2017. Benchmarking GATE/Geant4 for 16O ion beam therapy. Physics in Medicine & Biology, 62(18):N474- N484.
  • Saitoh, J. ichi, et al., 2017. A Multicenter Study of Carbon -Ion Radiation Therapy for Head and Neck Adenocarcinoma, International Journal of Radiation Oncology, Biology, Physics, 99, 442–449.
  • Schardt D., Elsässer T. and Schulz-Ertner D. 2010. Heavyion tumor therapy: physical and radiobiological benefits, Reviews of Modern Physics, 82, 383.
  • Snyder W.S., et al., 1969. Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of heterogeneous phantom. Journal of Nuclear Medicine, 3:7-52.
  • Tessonnier, T., et al., 2018. Proton and Helium Ion Radiotherapy for Meningioma Tumors: A Monte Carlo-based Treatment Planning Comparison. Radiation Oncology, 13(1), 2.
  • Traini, G., et al., 2017. Design of a new tracking device for on-line beam range monitor in carbon therapy. Physica Medica, 34 (2017), 18–27.
  • Zhang, R., et al., 2013. Advantages of mcnpx-based lattıce tally over mesh tally in high-speed monte carlo dose reconstructıon for proton radiotherapy. Nuclear Technology, 183(1), 101–106.
  • https://www.ptcog.ch (07.03.2018)