Havuz Suyu ve Havuz İç Ortamında Doğrusal ve Halkalı Metil SiloksanKonsantrasyonlarının Belirlenmesi, Yüzücülerin Metil SiloksanMaruziyeti

Metil siloksanlar (MS’lar) kişisel bakım ve temizlik ürünlerinde kullanılmaktadır. Ürünlerin büyük oranda kapalı alanlarda kullanılması, iç ortamda bu bileşiklerin tespit edilmesine neden olmaktadır. Kapalı yüzme havuzlarında yapılan antrenmanlar sırasında çocuklar, gençler ve yetişkinlerin normalden farklı olan solunum fonksiyonları nedeniyle, iç ortamda maruz kalacakları kirleticiler ve bu kirleticilerin miktarları daha da önem kazanmaktadır. Çalışmada yarı olimpik yüzme havuzunun bulunduğu kapalı alanda 4 halkalı (H) (D3, D4, D5, D6) ve 3 doğrusal (D) (L3, L4, L5) metil siloksan bileşiğinin havuz suyunda ve iç ortam havasında seviyeleri belirlenmiştir. Ayrıca inhalasyon yoluyla siloksanlara maruz kalma dozları, iç ortam havasındaki konsantrasyonlara dayalı olarak çocuklar, gençler ve yetişkinler için belirlenmiştir. Havuz suyu DMS konsantrasyonları 0,58 - 7,58 ng/L, HMS konsantrasyonu 18,7 - 163,8 ng/L arasındadır. Havuz suyunda D5 (16,06 ± 5,32 ng/L) ve D6 (17,96 ± 26,19 ng/L) en baskın HMS bileşikleridir. Yüzme havuzunun bulunduğu iç ortamda tespit edilen DMS bileşiklerinin toplam konsantrasyonu 0,22 ile 0,67 ng/$m^3$, HMS bileşiklerinin toplam konsantrasyonları 13,17 ile 130,75 ng/$m^3$arasında değişmiştir. İç ortam örneklerinde sırasıyla D5 (32,59 ± 26,28 ng/$m^3$) ve D3 (18,78 ± 19,08 ng/$m^3$) en baskın metil siloksan bileşiklerdir. İncelenen metil siloksan bileşiklerinin hava ve su arasındaki taşınım mekanizması siloksan bileşiklerinin havuz suyundan iç ortam havasına doğru bir taşınım yönüne sahip olduğunu göstermiştir. Yarı olimpik yüzme havuzu iç ortam havasını soluma yoluyla D5’e günlük maruz kalma dozu çocuklar, gençler ve yetişkinler için sırasıyla 1,30 - 0,68 ve 0,67 ng/kg-vücut ağırlığı/gün’dür.

Determination of Linear and Cyclic Methyl Siloxane Concentrations in Pool Water and Pool Indoor Air, Methyl Siloxane Exposure of Swimmers

Methyl siloxanes (MSs) are used in personal care and cleaning products. The use of the products inindoor causes the presence of compounds in the indoor air. Due to the different inhalation functions ofchildren, adolescents and adults during the exercises in indoor swimming pools, the pollutants to beexposed in the indoor environment and the concentration of these pollutants become more important. In the study, the levels of 4 cyclic (C) (D3, D4, D5, D6) and 3 linear (L) (L3, L4, L5) MS compound in thepool water and indoor air were determined in the semi-olympic swimming pool. In addition, exposuredoses to siloxanes by inhalation have been determined for children, adolescents and adults based onconcentrations in indoor air. Pool water LMS concentrations ranged from 0.58 - 7.58 ng/L, CMSconcentration between 18.7-163.8 ng/L. In pool water D5 (16.06 ± 5.32 ng/L) and D6 (17.96 ± 26.19ng/L) are the most dominant CMS compounds. The total concentration of LMS compounds detected inthe indoor air of the swimming pool ranged from 0.22 to 0.67 ng/$m^3$ , and the total concentrations ofCMS compounds ranged from 13.17 to 130.75 ng/$m^3$ . In indoor, D5 (32.59 ± 26.28 ng/$m^3$ ) and D3 (18.78± 19.08 ng/$m^3$ ) are the most dominant MS, respectively. The transport mechanism of the MScompounds showed that the siloxane compounds have moved from the pool water to the indoor air.The daily exposure dose of people to D5 by inhalation swimming pool indoor air is 1.30- 0.68 and 0.67ng/kg-body weight/day for children, adolescents and adults.

___

  • Baloch, R.M., Maesano, C.N., Christoffersen, J., banerjee, S., Gabriel, M., Csobod, E., de Oliveira Fernandes, E., Annesi-Maesano, I., 2020. Indoor air pollution, physical and comfort parameters related toschoolchildren's health: Data from the EuropeanSINPHONIE study. Science of The Total Environment, 739, 139870.
  • Benjamin, M., King Nathan, J., Bryngelson, N., Adamcakova-Dodd, A., Lersch, T., Bunker, K., Casuccio, G., Thorne, P., Stanier, C., Fiegel, J., 2020. Lung cell exposure to secondary photochemical aerosols generated from OH oxidation of cyclic siloxanes. Chemosphere, 241, 125126.
  • Brooke, D.N., Crookes, M.J., Gray, D., Robertson, S., 2009a. Environmental Risk Assessment Report: Decamethylcyclopentasiloxane Environment Agency of England and Wales, Bristol.
  • Brooke, D.N., Crookes, M.J., Gray, D., Robertson, S., 2009b. Environmental Risk Assessment Report: Dodecamethylcyclohexasiloxane Environment Agency of England and Wales, Bristol.
  • Brooke, D.N., Crookes, M.J., Gray, D., Robertson, S., 2009c. Environmental Risk Assessment Report: Octamethylcyclotetrasiloxane Environment Agency of England and Wales, Bristol.
  • Bruinen de Bruin, Y., Koistinen, K., Kephalopoulos, S., Geiss, O., Tirendi, S., Kotzias, D., 2008. Characterisation of urban inhalation exposures to benzene, formaldehyde and acetaldehyde in the European Union: comparison of measured and modelled exposure data. Environmental Science and Pollution Research, 15, 417-430.
  • Capela, D., Alves, A., Homem, V., Santos, L., 2016. From the shop to the drain - volatile methylsiloxanes in cosmetics and personal care products. Environment International, 92-93, 50-62.
  • Companioni-Damas, E.Y., Santos, F.J., Galceran, M.T., 2014. Linear and cyclic methylsiloxanes in air by concurrent solvent recondensation-large volume injection-gas chromatography-mass spectrometry. Talanta, 118, 245-252.
  • Dewil, R., Appels, L., Baeyens, J., Buczynska, A., Vaeck, L., 2007. The analysis of volatile siloxanes in waste activated sludge. Talanta, 74, 14-19.
  • Dumanoglu, Y., Yaman, B., Odabasi, M., 2018. Seasonal variations of cyclic and linear volatile methylsiloxanes in an urban atmosphere. 38th International Symposium on Halogenated Persistent Organic Pollutants (POPs) & 10th International PCB WorkshopDIOXIN 2018 (Krakow, Poland).
  • Dudzina, T., von Goetz, N., Bogdal, C., Biesterbos, J.W.H., Hungerbuhler, K., 2014. Concentrations of cyclic volatile methylsiloxanes in European cosmetics and personal care products: Prerequisite for human and environmental exposure assessment. Environment International, 62, 86-94.
  • ECHA, 2019. ECHA REACH Annex XV restriction report. Octamehylcyclotetrasiloxane (D4), Decamethylcyclopentasiloxane (D5), Dodecamethylcyclohexasiloxane (D6). https://echa.europa.eu/documents/10162/039f5415 -d7a2-b279-d270-0d07e18f6392 (01.10.2020)
  • Environment Canada, 2008a. Environment Canada Screening Assessment for the Challenge Decamethylcyclopentasiloxane. Chemical abstracts service registry number 541-02-6.
  • Environment Canada, 2008b. Environment Canada Screening Assessment for the Challenge Dodecamethylcyclohexasiloxane. Chemical abstracts service registry number 540-97-6.
  • Environment Canada, 2008c. Environment Canada Screening Assessment for the Challenge Octamethylcyclotetrasiloxane. Chemical abstracts service registry number 556-67-2.
  • European Parliament, 2018. Vapour pressures of poly(dimethylsiloxane) oligomers. https://eurlex.europa.eu/eli/reg/2018/35/oj (01.10.2020)
  • Genualdi, S., Harner, T., Cheng, Y., Macleod, M., Hansen, K.M., van Egmond, R., Shoeib, M., Lee, S.C., 2011. Global distribution of linear and cyclic volatile methyl siloxanes in air. Environmental Science & Technology, 45, 3349-3354.
  • Gökhan, İ., 2010. 8 Hatalık Yüzme Eğitim Programının Genç Sedanter Erkeklerde Solunum, Dolaşım, Kapiller Oksijen Saturasyonu ve Bazı Metabolik Parametreler Üzerine Etkisi. Doktora Tezi, Fırat Üniversitesi Sağlık Bilimleri Enstitüsü, Elazığ, 101.
  • Gökhan, İ., Kürkçü, R., Devecioğlu, S., Aysan, H.A., 2011. Yüzme Egzersizinin Solunum Fonksiyonlarına, Kan Basıncına ve Vücut Kompozisyonu Üzerine Etkisi. Klinik ve Deneysel Araştırma Dergisi, 2, 35-41.
  • Guo, J., Zhou, Y., Zhang, B., Zhang, J., 2019. Distribution and evaluation of the fate of cyclic volatile methyl siloxanes in the largest lake of southwest China. Science of The Total Environment, 657, 87-95.
  • Guo, J., Zhou, Y., Sun, M., Cui, J., Zhang, B., Zhang, J., 2020. Methylsiloxanes in plasma from potentially exposed populations and an assessment of the associated inhalation exposure risk. Environment International, 143, 105931.
  • Hanedar, A., Alp, K., Kaynak, B., Baek, J., Avsar, E., Odman, M.T., 2011. Concentrations and sources of PAHs at three stations in Istanbul, Turkey. Atmospheric Research, 99, 391-399.
  • Hanedar, A., Alp, K., Kaynak, B., Avsar, E., 2014. Toxicity evaluation and source apportionment of Polycyclic Aromatic Hydrocarbons (PAHs) at three stations in Istanbul, Turkey. Science of The Total Environment, 488-489, 437-446.
  • Hobson, J.F., Atkinson, R., Carter, W.P.L., 1997. Organosilicon materials. The handbook of environmental chemistry. Grish Chandra (editör), Springer-Verlag, New York, 137–179.
  • Homem, V., Capela, D., Silva, J.A., Cincinelli, A., Santos, L., Alves, A., Ratola, N., 2017. An approach to the environmental prioritisation of volatile methylsiloxanes in several matrices. Science of The Total Environment, 579, 506-513.
  • Horii, Y., Kannan, K., 2008. Survey of organosilicone compounds, including cyclic and linear siloxanes, in personal-care and household products. Archives of Environmental Contamination and Toxicology, 55, 701-710.
  • Horii, Y., Minomo, K., Ohtsuka, N., Motegi, M., Nojiri, K., Kannani, K., 2017. Distribution characteristics of volatile methylsiloxanes in Tokyo Bay watershed in Japan: analysis of surface waters by purge and trap method. Science of The Total Environment, 586, 56- 65.
  • Horii, Y., Ohtsuka, N., Minimo, K., Takemine, S., Motegi, M., Hara, M., 2021. Distribution characteristics of methylsiloxanes in atmospheric environment of Saitama, Japan: Diurnal and seasonal variations and emission source apportionment. Science of The Total Environment, 754, 142399.
  • Kaj, L, Schlabach, M., Andersson, J., Cousins, A.P., Schmidbauer, N., Brorstrom-Lunden, E., 2005. Siloxanes in the Nordic environment. TemaNord, Nordic Council of Ministers, Copenhagen, 20-24.
  • Katsoyiannis, A., Bogdal, C., 2012. Interactions between indoor and outdoor air pollution-Trends and scientific challenges Introduction. Environmental Pollution, 169, 150-151.
  • Kierkegaard, A., McLachlan, M.S., 2013. Determination of linear and cyclic volatile methylsiloxanes in air at a regional background site in Sweden. Atmospheric Environment, 80, 322-329.
  • Knoerr, S.M., Durham, J.A., Mcnett, D.A., 2017. Development of collection, storage and analysis procedures for the quantification of cyclic volatile methylsiloxanes in wastewater treatment plant effluent and influent. Chemosphere, 182, 114–121.
  • Krenczkowska D, Mojsiewicz-Pieńkowska K, Wielgomas B, Cal K, Bartoszewski R, Bartoszewska S, Jankowski Z., 2019. The consequences of overcoming the human skin barrier by siloxanes (silicones) Part 1. Penetration and permeation depth study of cyclic methyl siloxanes. Chemosphere, 231, 607-623.
  • Li, Q., Lv, X., Wang, X., Hu, J., Wang, X., Ma, J., 2020. Typical indoor concentrations and mass flow of cyclic volatile methylsiloxanes (cVMSs) in Dalian, China. Chemosphere, 248, 126020.
  • Lieberman, M.W., Lykissa, E.D., Barrios, R., Ou, C.N., Kala, G., Kala, S.V., 1999. Cyclosiloxanes produce fatal liver and lung damage in mice. Environmental Health Perspectives, 107, 161–165.
  • Lee, S., Moon, H.B., Song, G.J., Ra, K., Lee, W.C., Kannan, K., 2014. A nationwide survey and emission estimates of cyclic and linear siloxanes through sludge from wastewater treatment plants in Korea. Science of The Total Environment, 497–498, 106–112.
  • Liu, N.N., Shi, Y.L., Li, W.H., Xu, L, Cai, Y.Q., Lu, Y., Yuan, T., Wang, W., Kannan, K., 2011. Concentrations and assessment of exposure to siloxanes and synthetic musks in personal care products from China. Environmental Pollution, 159, 3522–3528.
  • Meijer, S.N., Harner, T., Helm, P.A., Halsall, C.J., Johnston, A.E., Jones, K.C., 2001. Polychlorinated naphthalenes in UK soils: time trends, markers of source, and equilibrium status. Environmental Science & Technolog, 35, 4205-4213.
  • McKim, J.M., Wilga, P.C., Breslin, W.J., Plotzke, K.P., Gallavan, R.H., Meeks, R.G., 2001. Potential estrogenic and antiestrogenic activity of the cyclic siloxane octamethylcyclotetrasiloxane (D4) and the linear siloxane hexamethylsiloxane (HMDS) in immature rats using the uterotrophic assay. Toxicological Sciences, 63, 37–46.
  • Mahiba, S., Tom, H., 2002. Characterization and comparison of three passive air samplers for persistent organic pollutants. Environmental Science & Technology, 36, 4142-4151.
  • Meeks, R.G., Stump, D.G., Siddiqui, W.H., Holson, J.F., Plotzke, K.P., Reynolds, V.L., 2007 An inhalation reproductive toxicity study of octamethylcyclotetrasiloxane (D4) in female rats using multiple and single day exposure regimens. Reproductive Toxicology, 23, 192–201.
  • Neyzi, O., Günöz, H., Furman, A., Bundak, R., Gökçay, G., Darendeliler, F., Baş, F., 2008. Türk çocuklarında vücut ağırlığı, boy uzunluğu, baş çevresi ve vücut kitle indeksi referans değerleri. Çocuk Sağlığı ve Hastalıkları Dergisi, 51, 1-14.
  • Quing, A.L., Dalu, A., Meeker, L.S., Jean, P.A., Meeks, R.G., Crissman, R.H., Gallavan, R.H., Plotzke, K.P., 2007. Effects of octamethylcyclotetrasiloxane (D4) on the luteinizing hormone (LH) surge and levels of various reproductive hormones in female Sprague-Dawley rats. Reproductive Toxicology, 23, 532–540.
  • Pieri, F., Katsoyiannis, A., Martellini, T., Hughes, D., Jones, K.C., Cincinelli, A., 2013. Occurrence of linear and cyclic volatile methyl siloxanes in indoor air samples (UK and Italy) and their isotopic characterization. Environment International, 59, 363- 371.
  • Reddy, M.B., Dobrev, I.D., McNett, D.A., Tobin, J.M., Utell, M.J., Morrow, P.E., Domoradzki, J.Y., Plotzke, K.P., Andersen, M.E., 2008. Inhalation dosimetry modeling with decamethylcyclopentasiloxane in rats and humans. Toxicological Sciences, 105, 275-285.
  • Sanchez-Brunete, C., Miguel, E., Albero, B., Tadeo, J.L., 2010. Determination of cyclic and linear siloxanes in soil samples by ultrasonic-assisted extraction and gas chromatography-mass spectrometry. Journal of Chromatography A, 1217, 7024–7030.
  • Sarigiannis, D.A., Karakitsios, S.P., Gotti, A., Liakos, I.L., Katsoyiannis, A., 2011. Exposure to major volatile organic compounds and carbonyls in European indoor environments and associated health risk. Environment International, 37, 743-765.
  • Siddiqui, W.H., Stump, D.G., Plotzke, K.P., Holson, J.F., Meeks, R.G., 2007. A two generation reproductive toxicity study of octamethylcyclotetrasiloxane (D4) in rats exposed by whole-body vapor inhalation. Reproductive Toxicology, 23, 202–215.
  • Sha, B., Dahlberg, A.K., Wiberg, K., Ahrens, L., 2018. Fluorotelomer alcohols (FTOHs), brominated flame retardants (BFRs), organophosphorus flame retardants (OPFRs) and cyclic volatile methylsiloxanes (cVMSs) in indoor air from occupational and home environments. Environmental Pollution, 241, 319- 330.
  • Tang, X., Misztal, P.K., Nazaroff, W.W., Goldstein, A.H., 2015. Siloxanes are the most abundant volatile organic compound emitted from engineering students in a classroom. Environmental Science & Technology Letters, 2, 303-307.
  • Tran, M.T., Kannan, K., 2015. Occurrence of cyclic and linear siloxanes in indoor air from Albany, New York, USA, and its implications for inhalation exposure. Science of The Total Environment, 511, 138-144.
  • Tran, T.M., Le, H.T., Vu, N.D., Dang, G.H.M., Minh, T.B., Kannan, K., 2017. Cyclic and linear siloxanes in indoor air from several northern cities in Vietnam: Levels, spatial distribution and human exposure. Chemosphere, 184, 1117-1124.
  • Tran TM, Tu MB, Vu ND.,2018. Cyclic siloxanes in indoor environments from hair salons in Hanoi, Vietnam: Emission sources, spatial distribution, and implications for human exposure. Chemosphere, 212, 330-336.
  • USEPA (United States Environmental Protection Agency), 2002 Non-confidential Inventory Update Reporting Production Volume Information. Toxic Substances Control Act (TSCA). http://www.epa.gov/oppt/iur/tools/data/2002- vol.html (01.10.2020)
  • USEPA (U.S. Environmental Protection Agency), 2008. Child-specific Exposure Factors Handbook (Final Report). https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?de id=199243 (01.10.2020)
  • Yaman, B., Erkuzu, H., Okan, F., Odabasi, M., 2020. Spatial variations of linear and cyclic volatile methyl siloxanes in a river basin and their air-water exchange. Atmospheric Pollution Research, 11, 2308-2316.
  • Wang, R., Moody, R., Koniecki, D., Zhu, J., 2009. Low molecular weight cyclic volatile methylsiloxanes in cosmetic products sold in Canada: implication for dermal exposure. Environment International, 35, 900–904.
  • Wang, D.G., Norwood, W. Alaee, M. Byer, J.D. Brimble, S., 2013. Review of recent advances in research on the toxicity, detection, occurrence and fate of cyclic volatile methyl siloxanes in the environment. Chemosphere, 93, 711-725.
  • Wang, D.G., Du, J., Pei, W., Liu, Y.J., Guo, M.X., 2015. Modeling and monitoring cyclic and linear volatile methylsiloxanes in a wastewater treatment plant using constant water level sequencing batch reactors. Science of The Total Environment, 512, 472-479.
  • Wang, D.G., de Solla, S.R., Lebeuf, M., Bisbicos, T., Barrett, G.C., Alaee, M., 2017. Determination of linear and cyclic volatile methylsiloxanes in blood of turtles, cormorants, and seals from Canada. Science of The Total Environment, 574, 1254-1260.
  • Warner, N.A., Evenset, A., Christensen, G., Gabrielsen, G.W., Borga, K., Leknes, H., 2010. Volatile siloxanes in the European arctic: assessment of sources and spatial distribution. Environmental Science & Technology, 44, 7705-7710.
  • Xu, G.L., Xiao, X.H., Geng, Z.D., Liu, Y.F., Zhu, Z.H., 2007. Effect of external electric field excitation on methyl vinyl siloxane. Acta Physica Sinica, 56, 5196-5201.
  • Xu, L., Shi, Y., Wang, T., Dong, Z., Su, W., Cai, Y., 2012. Methyl siloxanes in environmental matrices around a siloxane production facility, and their distribution and elimination in plasma of exposed population. Environmental Science & Technology, 46, 11718- 11726.
  • Xu, S.H., Kropscott, B., 2014. Evaluation of The ThreePhase Equilibrium Method For Measuring Temperature Dependence of Internally Consistent Partition Coefficients (KOW, KOA, and KAW) for Volatile Methylsiloxanes and Trimethylsilanol. Environmental Toxicology and Chemistry, 33, 2702-2710.
  • Xu, S., Kozerski, G., Mackay, D., 2014. Critical Review and Interpretation of Environmental Data for Volatile Methylsiloxanes: Partition Properties. Environmental Science & Technology, 48, 11748−11759.
  • Xu, L., Shi, Y., Liu, N., Cai, Y., 2015. Methyl siloxanes in environmental matrices and human plasma/fat from both general industries and residential areas in China. Science of the Total Environment, 505, 454-463.
  • Xu, L., Zhi, L., Cai, Y., 2017. Methylsiloxanes in children silicone-containing products from China: Profiles, leaching, and children exposure. Environment International, 101, 165-172.
  • Yang, T., Xiong, J.Y., Tang, X.C., Misztal, P.K., 2018. Predicting Indoor Emissions of Cyclic Volatile Methylsiloxanes from the Use of Personal Care Products by University Students. Environmental Science & Technology, 52, 14208-14215.
  • Yucuis, R.A., Stanier, C.O., Hornbuckle, K.C., 2013. Cyclic siloxanes in air, including identification of high levels in Chicago and distinct diurnal variation. Chemosphere, 92, 905-910.