EmimHSO4 (1-Etil-3-Metil-İmidazolyum Hidrojen Sülfat) İyonik Sıvısının Anot Çamurundan Bakır Geri Kazanımı Üzerine Etkisi

Bu çalışmada, Türkiye'de ikincil atıklardan üretim yapan bir firmadan tedarik edilen ve %23.1 Cu, %20.5 Sn ve %15.4 Pb temel kimyasal kompozisyonuna sahip anot çamurundan bakır geri kazanımı için çevreye duyarlı yeni bir çözücü olan 1-etil-3-metil-imidazolyum hidrojen sülfat (EmimHSO4) iyonik sıvısı kullanımı araştırılmıştır. Yapılan deneysel çalışmalarda, bakır geri kazanımını etkileyen iyonik sıvı konsantrasyonu, sıcaklık, süre ve katı/sıvı oranı parametreleri incelenerek bakır için optimum geri kazanım koşulları Taguchi metodu ile belirlenmiştir. Varyans analizi yöntemi (ANOVA) kullanılarak optimum koşullar altında, bakır geri kazanımı için en etkili parametreler belirlenmiştir. Elde edilen sonuçlara göre bakır kazanımı için optimum koşullar; iyonik sıvı konsantrasyonu: %60, sıcaklık: 95 oC, süre: 2 saat ve katı/sıvı oranı: 1/20 olarak tespit edilmiştir. Bakır kazanımı için en etkili parametrelerin sırasıyla, reaksiyon süresi, sıcaklık, katı/sıvı oranı ve iyonik sıvı konsantrasyonu olduğu belirlenmiştir.

The Effect of EmimHSO4 (1-Ethyl-3-Methyl-İmidazolium Hydrogen Sulfate) on Copper Recovery from Anode Slime

In this present study, a new solvent called 1-ethyl-3-methyl-imidazolium hydrogen sulphate (EmimHSO4) was used for recovery of copper from anode slime. Sample whose compounds are mainly of 23.1% Cu, 20.5 %Sn and 15.4% Pb was provided from a copper refining plant making production from secondary grade wastes in Turkey. The optimum metal recovery conditions for copper including ionic liquid concentration, temperature, time and solid/liquid ratio which affect the leaching efficiency were investigated in the experiments were detected by Taguchi method. Also, the most effective parameters under the optimum conditions for copper metal recovery were determined by analysis of variance method (ANOVA). According to the experimental results, optimum conditions for copper recovery were found as for ionic liquid concentration; 60%, for temperature; 95 oC, for time; 2 hours and for solid/liquid ratio; 1/20. The most effective parameters determined as leaching duration, temperature, pulp density (solid/liquid ratio) and ionic liquid concentration, respectively.

___

  • Amer, A. M., 2002. Processing of copper anode-slimes for extraction of metal values. Physicochemical Problems of Mineral Processing, 36, 123-134.
  • Atalay, T. S., Kılıçarslan, A. and Sarıdede, M. N., 2015, Recovery of metals from waste printed circuit boards by leaching with 1-ethyl-3-methyl imidazolium hydrogen sulphate ionic liquid. Energy Technology, 201 - 207.
  • Beşe, A. V., Ata, O. N., Celik, C. and Colak, S., 2003. Determination of the optimum conditions of dissolution of copper in converter slag with chlorine gas in aqueous media. Chemical Engineering and Processing: Process Intensification, 42(4), 291-298.
  • Chen, T. T. and Dutrizac, J. E., 1989. A mineralogical study of the deportment and reaction of silver during copper electrorefining. Metallurgical Transactions B, 20(3), 345-361.
  • Chen, L., Sharifzadeh, M., Dowell, N.M., Welton, Shahc, T.N. and Hallett, J.P., 2014. Inexpensive ionic liquids- [HSO4] based solvent production at bulk scale. Green Chemistry, 16, 3098-3106.
  • Dong, T., Hua, Y., Zhang, Q. and Zhou, D., 2009. Leaching of chalcopyrite with Brønsted acidic ionic liquid. Hydrometallurgy, 99(1), 33-38.
  • Dönmez, B., Celik, C., Colak, S. and Yartasi, A., 1998. Dissolution optimization of copper from anode slime in H2SO4 solutions. Industrial & Engineering Chemistry Research, 37(8), 3382-3387.
  • Ekinci, Z., Şayan, E., Beşe, A. V. and Ata, O. N., 2007. Optimization and modeling of boric acid extraction from colemanite in water saturated with carbon dioxide and sulphur dioxide gases. International Journal of Mineral Processing, 82(4), 187-194.
  • Farahmand, F., Moradkhani, D., Safarzadeh, M. S. and Rashchi, F., 2009. Brine leaching of lead-bearing zinc plant residues: Process optimization using orthogonal array design methodology. Hydrometallurgy, 95(3), 316- 324.
  • Guo, Z. H., Pan, F. K., Xiao, X. Y., Zhang, L. and Jiang, K. Q., 2010. Optimization of brine leaching of metals from hydrometallurgical residue. Transactions of Nonferrous Metals Society of China, 20(10), 2000-2005.
  • Hait, J.,Jana, R. K. and Sanyal S. K., 2009. Processing of copper electrorefining anode slime: a review. Mineral Processing and Extractive Metallurgy, 118 (4), 240-253.
  • Huang, J., Chen, M., Chen, H., Chen, S. and Sun, Q., 2014. Leaching behavior of copper from waste printed circuit boards with Brønsted acidic ionic liquid. Waste Management, 34(2), 483-488.
  • Khaleghi, A., Ghader, S. and Afzali, D., 2014. Ag recovery from copper anode slime by acid leaching at atmospheric pressure to synthesize silver nanoparticles. International Journal of Mining Science and Technology, 24(2), 251-257.
  • Kilicarslan, A., Saridede, M. N., Stopic, S. and Friedrich, B., 2014. Use of ionic liquid in leaching process of brass wastes for copper and zinc recovery .International Journal of Minerals, Metallurgy, and Materials, 21(2), 138-143.
  • Kilic, Y., Kartal, G. and Timur, S., 2013. An investigation of copper and selenium recovery from copper anode slimes. International Journal of Mineral Processing, 124, 75-82.
  • Norgate, T.E., Jahanshahi, S. and Rankin, W.J., 2007. Assessing the environmental impact of metal production processes, Journal of Cleaner Production, 15(8-9), 838- 848.
  • Park, J., Jung, Y., Kusumah, P., Lee, J., Kwon, K. and Lee, C. K., 2014. Application of ionic liquids in hydrometallurgy. International Journal of Molecular Sciences, 15(9), 15320-15343.
  • Safarzadeh, M. S., Moradkhani, D., Ilkhchi, M. O. and Golshan, N. H., 2008. Determination of the optimum conditions for the leaching of Cd-Ni residues from electrolytic zinc plant using statistical design of experiments. Separation and Purification Technology, 58(3), 367-376.
  • Shaji, S. and Radhakrishnan, V., 2003. Analysis of process parameters in surface grinding with graphite as lubricant based on the Taguchi method. Journal of Materials Processing Technology, 141(1), 51-59.
  • Siddiquee, A. N., Khan, Z. A., Goel, P., Kumar, M., Agarwal, G. and Khan, N. Z., 2014. Optimization of deep drilling process parameters of AISI 321 steel using Taguchi method. Procedia Materials Science, 6, 1217- 1225.
  • Tian, G. C., Jian, L. I. and Hua, Y. X., 2010. Application of ionic liquids in hydrometallurgy of nonferrous metals. Transactions of Nonferrous Metals Society of China, 20(3), 513-520.
  • Whitehead, J. A., Zhang, J., Pereira, N., McCluskey, A. and Lawrance, G. A., 2007. Application of 1-alkyl-3- methyl-imidazolium ionic liquids in the oxidative leaching of sulphidic copper, gold and silver ores. Hydrometallurgy, 88(1), 109-120
  • Yeşilyurt, M. 2004. Determination of the optimum conditions for the boric acid extraction from colemanite ore in HNO3 solutions. Chemical Engineering and Processing: Process Intensification, 43(10), 1189-1194.