Düşük Maliyetli Adsorbentler Üzerine Dispers Sarı 211 Tekstil Boyasının Adsorpsiyonu

Bu çalışmada, tekstil boyası Dispers Sarı 211'in ekonomik olarak üretilen aktif karbonlar üzerine adsorpsiyonu incelenmiştir. Aktif karbonlar kiraz çekirdeklerinden, kimyasal aktivasyon ajanı olarak NaOH ve KOH'in kullanıldığı kimyasal aktivasyonla üretilmişlerdir. Adsorpsiyon prosesi kesikli deneylerde, şu deneysel parametrelerle incelenmiştir: temas süresi, adsorbent miktarı, çözelti başlangıç pH'sı ve sıcaklık. Adsorbentlerin farklı pH'larda zeta potansiyel ölçümleri yapılmıştır. Ayrıca, adsorpsiyon prosesi için denge, kinetik ve termodinamik çalışmalar gerçekleştirilmiştir. Adsorpsiyon denge ölçümleri Langmuir, Freundlich ve Temkin izotermleri ile incelenmiş ve model parametreleri belirlenmiştir. DS 211 tekstil boyasının adsorpsiyonu için AK1 ve AK2 adsorbentlerinin adsorpsiyon kapasiteleri (Q0) sırasıyla 373.1 ve 305.8 mg/g olarak hesaplanmıştır. Her iki adsorbentle yapılan çalışmada, adsorpsiyonu en iyi ifade edebilen kinetik modelin yalancı ikinci derece kinetik model olduğu saptanmıştır. Hesaplanan termodinamik parametreler, adsorpsiyonun 30-50 °C aralığında kendiliğinden gerçekleşen endotermik bir proses olduğunu göstermektedir. Sonuç olarak mikrodalga yöntemiyle KOH ve NaOH ile kiraz çekirdeklerinden üretilen aktif karbonların sulu çözeltilerden DS 211 tekstil boyasını adsorpsiyonunda düşük maliyetli ve etkili bir adsorbent olarak kullanılabileceği belirlenmiştir

Adsorption of Textile Dye Dispers Yellow 211 onto Low Cost Adsorbents

In this study, adsorption of textile dye Dispers Yellow 211 on to economically produced activated carbons has been investigated. Activated carbons have been prepared from cherry stone by the chemical activation using NaOH and KOH as chemical activating agents. The adsorption process has been investigated in batch experiments with the following experimental parameters: contact time, amount of adsorbent, solution pH and temperature. Zeta potential measurements of adsorbents at different pHs were performed. Additionally, equilibrium, kinetic and thermodynamic studies were carried out for the DY 211 adsorption. Adsorption equilibrium measurements were treated with Langmuir, Freundlich and Temkin isotherm models and model parameters were determined. Adsorption capacity (Q0) of adsorbents AK1 and AK2 for DS 211 adsorption were found to be 373.1 and 305.8 mg/g, respectively. For both studied adsorbents, pseudo-second-order kinetic model was the best model to express the adsorption kinetics. Calculated thermodynamic parameters showed that, adsorption was a spontaneous endothermic process between 30 and 50 °C. As a result, activated carbon produced from cherry stones with microwave-induced activation by KOH and NaOH could be used as a low cost and effective adsorbent for the adsorption of disperse yellow 211 textile dye from aqueous solutions. © Afyon Kocatepe Üniversitesi

___

  • Allen, S.J., Mckay, G. and Porter J.F., 2004. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid and Interface Science, 280, 322-333.
  • Auta, M., Hameed B.H., 2011. Optimized waste tea activated carbon for adsorption of methylene blue and acid blue 29 dyes using response surface methodology. . Chemical Engineering Journal, 175, 233-243.
  • Cebecioğlu, F.N., 2010. Reaktif orange 14 ve reaktif blue 2 tekstil boyalarının beyaz çürükçül fungus Lentinus concinnus ile giderimi. Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 67.
  • Cheah W., Hosseini S., Khan M.A., Chuah T.G. and Choong T.S.Y., 2013. Acid modified carbon coated monolith for methyl orange adsorption. Chemical Engineering Journal, 215-216, 747-754.
  • Deng, H., Zhang, G., Xu, X., Tao, G., and Dai, J., 2010. Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acidchemical activation. Journal of Hazardous Materials, 182, 217-224.
  • Erdogan, T., and Oguz Erdogan F., 2016. Characterization of the adsorption of disperse yellow 211 on activated carbon from cherry stones following microwaveassisted phosphoric acid treatment. Analytical Letters, 49, 917-928.
  • Foo K.Y., and Hameed B.H., 2011. Preparation and characterization of activated carbon from pistachio nut shells via microwave-induced chemical activation. Biomass and Bioenergy, 35, 3257-3261.
  • Foo K.Y., and Hameed B.H., 2012a. A cost effective method for regeneration of durian Shell and jackfruit peel activated carbons by microwave irradiation. Chemical Engineering Journal, 193-194, 404-409.
  • Foo K.Y., and Hameed B.H., 2012b. Factors affecting the carbon yield and adsorption capability of the mangosteen peel activated carbon prepared by microwave assisted K2CO3 activation. Chemical Engineering Journal, 180, 66-74.
  • Günay A., Dikmen S., Ersoy B., and Evcin A., 2014. Bazik mavi-16 boyarmaddesinin kil üzerine adsorpsiyonu. European Journal of Science and Technology, 1, 29-38.
  • Kılıç M., Çepelioğullar Ö., Özsin G., Uzun B.B. and Pütün A.E., 2014. Nohut samanı tarla atığının sulu çözeltilerden metilen mavisi gideriminde düşük maliyetli biyosorbent olarak değerlendirilmesi. Gazi Üniv. Müh. Mim. Fak. Dergisi, 29, 717-726.
  • Lin, Q.H., Cheng, H., and Chen, G.Y., 2012. Preparation and characterization of carbonaceous adsorbents from sewage sludge using a pilot-scale microwave equipment. Journal of Analytical and Applied Pyrolysis, 93, 113-119.
  • Liu, Q.S., Zheng, T., Wang, P., and Guo L., 2010. Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Industrial Crops and Products, 31, 233-238.
  • Lozano-Álvarez J.A., Jáuregui Rincón J., Mendoza-Díaz G., Rodríguez-Vázguez R., Frausto-Reyes C., 2009. Study of sorption equilibrium of biopolymers alginic acid and xanthan with C.I. disperse yellow 54. J. Mex. chem. Soc., 53 (2), 59-70.
  • Oguz Erdogan, F., 2016. Characterization of the activated carbon surface of cherry Stones prepared by sodium and potassium hydroxide. Analytical Letters, 49, 1079-1090.
  • Oğuz Erdoğan, F., 2017. Comparison of textile dye adsorption properties of low-cost biowaste adsorbents. Journal of Textiles and Engineer, 24, 181- 187.
  • Prabhu, K.B., Kini M.S., Sarovar, A., 2016. Equilibrium, kinetic, and thermodynamic studies on the removal of Chromium (VI) using activated carbon prepared from Cocos nucifera roots as an adsorbent. International Journal of Applied Environmental Sciences, 11, 1-25.
  • Sweetman, M.J., May, S., Mebberson, N., Pendleton, P., Vasilev, K., Plush, S.E., Hayball, J.D., 2017. Activated carbon, carbon nanotubes and graphene: materials and composites for advanced water purification. Journal of Carbon Research, 3(18), 1-29.
  • Tran, V.T., Nguyen, D.T., Ho, V.T.T., Hoang, P.Q.H.,Bui, P.Q., Bach, L.G., 2017. Efficient removal of Ni+2 ions from aqueous solution using activated carbons fabricated from rice straw and tea waste. Journal of Materials and Environmental Sciences, 8, 426-437.
  • Turabik M, 2003. Basic Blue 3 boyar maddesinin bentonit kili üzerine adsorpsiyon mekanizmasının incelenmesi. V. Çevre Mühendisliği Kongresi bildiriler Kitabı, 593- 601.
  • Yang, K., Peng , J., Srinivasakannan, C., Zhang, L., Xia, H., and Duan, X., 2010. Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresource Technology, 101, 6163-6169.
  • Yao, Y., He, B., Xu, F., Chen, X., 2011. Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes. Chemical Engineering Journal, 170, 82-89.
  • Yuşan, S., 2017. U(VI) iyonlarının ham ve modifiye edilmiş diyatomit üzerine adsorpsiyon özelliklerinin kinetik ve termodinamik olarak incelenmesi. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 13 (3), 761-768.
  • Zhang, W., Li, H., Kan, X., Dong, L., Yan, H., Jiang, Z., Yang, H., Li, A., and Cheng, R., 2012. Adsorption of anionic dyes from aqueous solutions using chemically modified straw. Bioresource Technology, 117, 40-47.
  • Zhao D., Zhang W., Chen C. and Wang X., 2013. Adsorption of methyl orange dye onto multiwalled carbon nanotubes. Procedia Environmental Sciences, 18, 890-895.