Cam Fiberle Güçlendirilmiş Hidroksiapatit Üretimi

Hidroksiapatit (HA), biyomedikal alanda bilinen en yaygın biyoseramiktir. Hidroksiapatit formülü Ca10(PO4)6(OH)₂ şeklindedir. Bu çalışmada, cam elyafın (CF) HA'e etkisi çalışıldı. HA, sol-jel prosesi ilesentezlendi. Ağırlıkça % 10 oranında CF içeren karışım, hidrolik presle şekillendirildi. Homojen tozlar 4saat 1100C'de sinterlendi. Tozların mineralojik yapısı ve tane boyutu, X-ışını difraktometresi (XRD) vetane boyut analiz cihazı ile yapılmıştır. XRD analizinden HA tozu, JCPDS No.09-0432 kart ile uyumluolarak elde edildi. Daha sonra şekillendirilmiş örnekler taramalı elektron mikroskobu (SEM), ve üniversaltest cihazı ile karakterize edildi. CF ilavesi ile 3 nokta eğilme mukavemeti ve basınç dayanımı iyileştirildi.Cam fiber katkılı HA’nın eğme ve basma mukavemetinde artmanın katkısız HA’ya nazaran sırasıyla %20,3 ve % 23,3 olduğu görülmüştür.

Production of Glass Fiber Reinforced Hydroxyapatite

Hydroxyapatite is the most common known bioceramics in biomedical area. The formula of Hydroxyapatite (HA) is Ca₁₀(PO₄)₆(OH)₂. In this study, the effect of glassfiber (GF) to HA was performed. HA was synthesized by sol-gel process. Mixture containing 10 wt% of GF was shaped by hydraulic press. Homogenous powders were sintered at 1100C for 4 hours. Mineralogical properties and particle size and distribution of powders were performed by X-ray diffractometer (XRD) and particle size analyzer. From XRD analysis, the HA powder was obtained as confirmed by the JCPDS file No.09-0432. Then shaped samples were performed by universal testing machine and scanning electron microscope (SEM). 3 point bending strength and compressive strength were improved by GF addition. Increase in the bending and compressive strength of the glass fiber doped HA is observed to be 20.3% and 23.3% compared to the undoped HA, respectively.

___

  • Águila M.J.R., Reyes-Avendaño J.A., Mendoza M. E., 2017. Structural analysis of metal-doped (Mn, Fe, Co, Ni, Cu, Zn) calcium hydroxyapatite synthetized by a sol-gel microwave-assisted method, Ceramics International, 43, 15, 12705-12709.
  • Bulina N.V., Chaikina M.V., Prosanov I.Y., Komarova E.G., Sedelnikova M.B., Sharkeev Y.P., Sheikin V.V., 2018. Lanthanum–silicate–substituted apatite synthesized by fast mechanochemical method: Characterization of powders and biocoatings produced by micro–arc oxidation, Materials Science and Engineering: C, 92, 435-446.
  • Canillas M., Rivero R., García-Carrodeguas R., Barba F., Rodríguez M.A., 2017, Processing of hydroxyapatite obtained by combustion synthesis, Boletín de la Sociedad Española de Cerámica y Vidrio, 56, 5, 237- 242.
  • Chahkandi M., 2017. Mechanism of Congo red adsorption on new sol-gel-derived hydroxyapatite nano-particle. Materials Chemistry and Physics, 202, 340-351.
  • Chen Z., Liu Y., Mao L., Gong L., Sun W., FengL.,2018. Effect of cation doping on the structure of hydroxyapatite and the mechanism of defluoridation, Ceramics International, 44, 6, 6002-6009.
  • Daryan S.H., Javadpour J., Khavandi A., Erfan M, 2018. Morphological evolution on the surface of hydrothermally synthesized hydroxyapatite microspheres in the presence of EDTMP. Ceramics International, 44, 16, 19743-19750.
  • El Idrissi B.C., Yamni K., Yacoubi A., Massit A., 2014. A novel method to synthesize nanocrystalline hydroxyapatite: Characterization with x-ray diffraction and infrared spectroscopy, IOSR Journal of Applied Chemistry, 7, 5 Ver. III., 107-112.
  • Ergün Y., Başpınar M.S., Taktak Ş., Evcin A., 2012. Titanyum Yüzeyine Sol-Jel Yöntemiyle Hidroksiapatit Kaplanması, Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, Özel Sayı, 15-21
  • Evcin A. and Bohur B.G., 2019 Coating of different silica sources containing hydroxyapatite for Ti6Al4V metal substrate using HVOF technique, Arabian Journal of Geosciences, Volume: 12 Issue: 6 , MAR 2019 DOI:10.1007/s12517-019-4302-7
  • Fang Z, Chormaic S.N., Wang S., Wang X, Yu J., Jiang Y., Qiu J., and Wang P., 2017. Bismuth-doped glass microsphere lasers, Photonic Research, 5, 6, 740-744.
  • Gnaneshwar P.V., Sudakaran S.V., Abisegapriyan S., Sherine J., Ramakrishna S., Ab.Rahim M.S., Yusoff M.M., Jose R., Venugopal J.R., 2019. Ramification of zinc oxide doped hydroxyapatite biocomposites for the mineralization of osteoblasts, Materials Science and Engineering: C, 96,337-346.
  • Gshalaev V.S., Demirchan A.C., 2012. Hydroxyapatite Synthesis, Properties and Applications, Nova Science Publishers, NewYork
  • Hasırcı V., Hasırcı N., 2018. Fundamentals of Biomaterials. Springer New York.
  • Iscoa P.L., Petit L., Massera J., JannerD., Boetti N.G., Pugliese D., Fiorilli S., Novara C., Giorgis F., Milanese D., 2017. Effect of the addition of Al2O3, TiO2 and ZnO on the thermal, structural and luminescence properties of Er3+-doped phosphate glasses, Journal of Non-Crystalline Solids, 460, 161-168.
  • Khan F., and Tanaka M., 2018. Designing Smart Biomaterials for Tissue Engineering, International Journal of Molecular Sciences 19, 1, 17
  • Kovács T.N., Studnicka L., Kincses A., Spengler A., Molnár M., Tolner M., Lukács I.E., Szilágyi I.M., Pokol G., 2018. Synthesis and characterization of Sr and Mgdoped hydroxyapatite by a simple precipitation method. Ceramics International, in press.
  • Kuhn L.T., 2005. Biomaterials, Introduction to Biomedical Engineering (Second Edition) Biomedical Engineering, Elsevier 255-312 .
  • Küçük A., Evcin A., 2014. Elektroeğirme Yöntemiyle Bor Katkılı Hidroksiapatit Nanoliflerin Üretimi ve Karakterizasyonu, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 14 OZ5750, 319-324.
  • Lin K., Zhang M., Zhai W., Qu H., Chang J., 2010. Fabrication and Characterization of Hydroxyapatite/Wollastonite Composite Bioceramics With Controllable Properties for Hard Tissue Repair. Journal of the American Ceramic Society. 94. 99 - 105. 10.1111/j.1551-2916.2010.04046.x.
  • Ma X., Chen Y., Qian J., Yuan Y., Liu C., 2016. Controllable synthesis of spherical hydroxyapatite nanoparticles using inverse microemulsion method, Materials Chemistry and Physics, 183, 220-229.
  • Park J., Lakes R.S., 2008. Bioceramics Properties, Characterizations, and Applications, Springer, Iowa, 183-204.
  • Radha G., Venkatesan B., Vellaichamy E., Balakumar S., 2018. Structural, Mechanical and Biological Insights on Reduced Graphene Nanosheets Reinforced Sonochemically Processed Nano‐Hydroxyapatite Ceramics, Ceramics International, 44, 8777-8787.
  • Ramesh S., Natasha A.N., Tan C.Y., Bang L.T., Ramesh S., Ching C.Y., Chandran H., 2016. Direct conversion of eggshell to hydroxyapatite ceramic by a sintering method, Ceramics International, 42, 6, 7824-7829.
  • Riaz M., Zia R., Ijaz A., Hussain T., Mohsin M., MalikA., 2018. Synthesis of monophasic Ag doped hydroxyapatite and evaluation of antibacterial activity, Materials Science and Engineering: C, 90, 308-313.
  • Rujitanapanich S., Kumpapan P., Wanjanoi P., 2014. Synthesis of Hydroxyapatite from Oyster Shell via Precipitation, Energy Procedia 56 112 – 117.
  • Shi D., 2005. Introduction to Biomaterials, Tsinghua University Press, China
  • Shojai M.S., Khorasani M.T., Khoshdargi E.D., Jamshidi A., 2013. Synthesis methods for nanosized hydroxyapatite with diverse structures, Acta Biomaterialia 9 7591–7621.
  • Suchanek W., Yashima M., Kakihana M. And Yoshimura M. 1996. Processing and mechanical properties of hydroxyapatite reinforced with hydroxyabatite whiskers, Biomaterials 17, 1715-1723.
  • Vladescu A., Padmanabhan S.C., Ak Azem F., Braic M., Titorencu I., Birlik I., Morris M.A., Braic V., 2016.
  • Mechanical properties and biocompatibility of the sputtered Ti doped hydroxyapatite, Journal of the Mechanical Behavior of Biomedical Materials, 63, 314-325.
  • Yilmaz B., Alshemary A.Z., Evis Z.,2019. Co-doped hydroxyapatites as potential materials for biomedical applications, Microchemical Journal, 144, 443-453.
  • Zhao X., ZhangL., Wang X., Yang J., He F., Wang Y., 2018. Preparation and mechanical properties of controllable orthogonal arrangement of carbon fiber reinforced hydroxyapatite composites, Ceramics International 44 8322–8333.
  • Ziats N.P., Miller K.M., Anderson J.M., 1988. In vitro and in vivo interactions of cells with biomaterials, Biomaterials 9, 1, 5-13.