3-Metil-4-[4-(dimetilamino)-benzilidenamino]-4,5-dihidro-1H-1,2,4-triazol-5-on’un Bazı Deneysel Ölçümleri ve Teorik Çalışmaları

Bu metot çalışmasında, öncelikle 3-metil-4-[4-(dimetilamino)-benzilidenamino]-4,5-dihidro-1H-1,2,4-triazol-5-on bileşiği DFT (B3LYP, B3PW91 ve mPW1PW91) ve 6-311++G(d,p) temel setleri kullanılarak optimize edilmiştir. Optimize edilen yapıdan geometrik parametreleri (bağ uzunlukları, dihedral açıları ve bağ açıları), doğrusal olmayan optik özellikleri (NLO), titreşim frekansları, UV-vis, 1H- ve 13C-NMR spektral değerleri üzerine deneysel ve teorik çalışmalar yürütülmüştür.  1H- ve 13C-NMR kimyasal kayma değerleri,  GIAO  ve CSGT metotlarına göre optimize edilen yapı üzerinden başlanarak gaz ve çözücü (CCl4/DMSO) fazında Gaussian09W programı kullanılarak hesaplanmıştır. Molekülün titreşim dalga sayıları DFT (B3LYP, B3PW91 ve mPW1PW91)/6-311++G(d,p) temel seti ile çalışılmıştır. Bileşiğin FT-IR ve FT-Raman spektrumları kaydedilmiş ve gözlemlenen titreşim frekansları belirlenmiştir. B3LYP, B3PW91 ve mPW1PW91 yöntemlerinde elde edilen titreşim frekansları deneysel frekanslarla mukayese edilmiştir. Ayrıca, bu bileşiğin mulliken atomik yükleri, elektronegatiflik, elektron ilgisi, iyonlaşma potansiyeli, moleküler yumuşaklık, moleküler sertlik, dipol momentleri, HOMO ve LUMO enerjileri, moleküler elektrostatik potansiyeli (MEP) ve toplam enerjileri gibi elektronik ve termodinamik özellikleri aynı temel set ve metot kullanılarak hesaplanmıştır.

Some Experimental Measurements and Theoretical Studies of 3-Methyl4-[4-(dimethylamino)-benzylidenamino]-4,5-dihydro-1H-1,2,4-triazol-5- one

In this method study, primarily 3-methyl-4-[4-(dimethylamino)-benzylideneamino]-4,5-dihydro-1H1,2,4-triazole-5-one compound is optimized by using DFT (B3LYP, B3PW91 and mPW1PW91) method and 6-311++ G (d,p) basis set. Experimental and theoretical studies on geometric parameters (bond lengths, dihedral angles and bond angles), Non-linear optical properties (NLO), vibration frequencies, UV-vis, 1H- and 13C-NMR spectral values were carried out from the optimized structure. 1H- and 13CNMR chemical shifts were calculated by using Gaussian09W program in gas and solvent (CCl4/DMSO) phase starting from the structure optimized according to GIAO and CSGT methods. The vibration frequencies obtained from B3LYP, B3PW91 and mPW1PW91 methods were compared with experimental frequencies. In addition, the electronic and thermodynamic properties such as mulliken atomic charges electronegativity, electron affinity, ionization potential, molecular softness, molecular hardness, dipole moments, HOMO and LUMO energies, molecular electrostatic potential (MEP) and total energies of this compound are calculated by using the same method.

___

  • Abdel-Wahab, B.F., Mohamed, H.A., Awad, G.E.A., 2015. Synthesis and Biological Activity of Some New 1,2,3-Triazole Hydrazone Derivatives. European Chemical Bulletin, 4, 106–109. doi: 10.17628/ecb.2015.4.106-109
  • Abosadiya, H.M., Anouar, E.H., Abusaadiya, S.M., Hasbullah, S.A., Yamin, B.M., 2018. Synthesis, characterization, crystal structures and DFT studies of some new 1,2,4-triazole and triazolidin derivatives. Journal of Molecular Structure, 1151, 315-326. doi:10.1016/j.molstruc.2017.09.047
  • Akhtar, J., Khan, A.A., Ali, Z., Haider, R., Yar, M.S., 2017. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. European Journal of Medicinal Chemistry, 125, 143-189.doi:10.1016/j.ejmech.2016.09.023
  • Alkan, M., Yüksek, H., Gürsoy-Kol, Ö., Calapoğlu, M., 2008. Synthesis, Acidity and Antioxidant Properties of Some Novel 3,4-disubstituted-4,5-dihydro-1H-1,2,4-triazol-5-one derivatives. Molecules, 13(1), 107-121.doi:10.3390/molecules13010107
  • Aromi, G., Barrios, L.A., Roubeau, O., Gamez, P., 2011. Triazoles and tetrazoles: prime ligands to generate remarkable coordination materials. Coordination Chemistry Reviews, 255, 485-546.doi: 10.1016/j.ccr.2010.10.038
  • Becke, A.D., 1988. Density-functional exchange-energy approximation with correctasymptotic behavior. Physical review A: General Physics, 38(6), 3098-3100.doi: 10.1103/PhysRevA.38.3098
  • Becke, A.D., 1993. Density‐functional thermochemistry. III. The role of exact Exchange. The Journal of Chemical Physics, 98, 372-377.doi: 10.1063/1.464913
  • Chu, X.M., Wang, C., Wang, W.L., Liang, L.L., Liu, W., Gong, K.K., Sun, K.K., 2019. Triazole derivatives and their antiplasmodial and antimalarial activities. European Journal of Medicinal Chemistry, 166, 206-223.doi: 10.1016/j.ejmech.2019.01.047
  • Dennington, R., Keith, T., Millam, J., 2009. Gaussview, Version 5 Semichem Inc., Shawnee Mission, KS.Duc Y. L., Licsandru, E., Vullo, D., Barboiu, M., Supuran C.T., 2017. Carbonic anhydrases activation with 3-amino-1H-1,2,4-triazole-1-carboxamides: Discovery of subnanomolar isoform II activators Bioorganic & Medicinal Chemistry, 25. 1681–1686.doi: 10.1016/j.bmc.2017.01.031
  • El-Gazzar, Y.I., Georgey, H.H., El-Messery, S.M., Ewida, H.A., Hassan, G.S., Raafat, M.M., Ewida, M.A., El-Subbagh, H.I., 2017. Synthesis, biological evaluation and molecular modeling study of new (1,2,4-triazole or 1,3,4-thiadiazole)-methylthio-derivatives of quinazolin-4(3H)-one as DHFR inhibitors. Bioorganic Chemistry, 72, 282–292.doi: 10.1016/j.bioorg.2017.04.019
  • Fan, Y.L., Ke, X., Li, M., 2018a. Coumarin-triazole hybrids and their biological activities. Journal of Heterocyclic Chemistry, 55, 791-802.doi: 10.1002/jhet.3112
  • Fan, Y.L., Cheng, X.W., Wu, J.B., Liu, M., Zhang, F.Z., Xu, Z., Feng, L.S., 2018b. Antiplasmodial and antimalarial activities of quinolone derivatives: An overview. European Journal of Medicinal Chemistry, 146, 1-14.doi: 10.1016/j.ejmech.2018.01.039
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr. J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brother,s E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C.,. Iyengar, S.S, Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J. 2009. Gaussian 09, Gaussian, Inc., Wallingford CT.
  • Fukui, K., 1982. Role of Frontier Orbitals in Chemical Reactions. Science, 747-754. doi: 10.1126/science.218.4574.747
  • Gans, P., 1971. Vibrating Molecules. Chapman and Hall, 18-59.
  • Jin, R.Y., Zeng C.Y., Liang X.H., Sun, X.H., Liu Y.F., Wang, Y.Y., Zhou, S., 2018. Design, synthesis, biological activities and DFT calculation of novel 1,2,4-triazole Schiff base derivatives. Bioorganic Chemistry, 80, 253-260.doi: 10.1016/j.bioorg.2018.06.030
  • Lee, C., Yang, W., Parr, R.G., 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785-789.doi: 10.1103/PhysRevB.37.785
  • Liu, M., Liang, G., Zheng, H., Zheng, N., Ge H., Liu W., 2019. Triazoles bind the C-terminal domain of SMO: Illustration by docking and molecular dynamics simulations the binding between SMO and triazoles. Life Sciences, 217, 222-228 doi:10.1016/j.lfs.2018.12.012
  • Perdew, J. P., 1986a. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Physical Review B, 33, 8822. (b) Perdew, J. P., 1986b. Physical Review B, 34, 7406.doi:10.1103/PhysRevB.33.8822
  • Perdew, J. P., Wang, Y., 1992. Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45, 13244.doi: 10.1103/PhysRevB.45.13244
  • Roy, K.K., 2017. Targeting the active sites of malarial proteases for antimalarial drug discovery: approaches, progress and challenges. International Journal of Antimicrobial Agents, 50 (2017) 287-302.doi: 10.1016/j.ijantimicag.2017.04.006
  • Saeedi, M., Safavi, M., Karimpour-Razkenari, E., Mahdavi, M., Edraki, N., Moghadam, F.H., Khanavi, M., Akbarzadeh, T., 2017. Synthesis of novel chromenones linked to 1,2,3-triazole ring system: Investigation of biological activities against Alzheimer's disease. Bioorganic Chemistry, 70, 86–93.doi: 10.1016/j.bioorg.2016.11.011
  • Shahzad, S.A., Yar, M., Khan, Z.A. Shahzadi, L., Naqvi, S.A.R., Mahmood, A., Ullah, S., Shaikh, A.J., Sherazi, T.A., Bale, A.T., Kukułowicz, J., Bajda, M., 2019. Identification of 1,2,4-triazoles as new thymidine phosphorylase inhibitors: Future anti-tumor drugs. Bioorganic Chemistry, 85, 209-220.doi: 10.1016/j.bioorg.2019.01.005
  • Sudha, N., Abinaya, B., Kumar, R.A., Mathammal, R., 2018. Synthesis, Structural, Spectral, Optical and Mechanical Study of Benzimidazolium Phthalate crystals for NLO Applications. Journal of Lasers Optics & Photonics, 5(2), 1-6. doi:10.4172/2469-410X.1000184
  • Thakkar S. S., Thakor, P., Doshi, H., Ray, A., 1,2,4-Triazole and 1,3,4-oxadiazole analogues: Synthesis, MO studies, in silico molecular docking studies, antimalarial as DHFR inhibitor and antimicrobial activities. Bioorganic & Medicinal Chemistry, 25, 4064–4075.doi: 10.1016/j.bmc.2017.05.054
  • Wolinski, K., Hilton, J.F., Pulay, P., 1990. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. Journal of the American Chemical Society, 112. 8251-8260.doi: 10.1021/ja00179a005
  • Xu, J.H., Fan, Y.L., Zhou, J., 2018. Quinolone-triazole hybrids and their biological activities. Journal of Heterocyclic Chemistry, 55, 1854-1862.doi: 10.1002/jhet.3112
  • Zhang, S., Xu, Z., Gao, C., Ren, Q.C., Chang, L., Lv, Z.S., Feng, L.S., 2017. Triazole derivatives and their anti-tubercular activity. European Journal of Medicinal Chemistry, 138, 501-513.doi: 10.1016/j.ejmech.2017.06.051