Existence and uniqueness of solutions for Steklov problem with variable exponent

Existence and uniqueness of solutions for Steklov problem with variable exponent

In this article, we give some results on the existence and uniqueness of solutions concerned a class of elliptic problems involving $p(x)-$Laplacian with Steklov boundary condition. We give also some sufficient conditions to assure the existence of a positive solution.

___

  • [1] E. Acerbi and G. Mingione, Regularity results for stationary electrorheological ?uids, Arch. Ration. Mech. Anal. 164 (2002) 213-259.
  • [2] M.V. Abdelkader, A. Ourraoui, Existence And Uniqueness Of Weak Solution For p-Laplacian Problem In R N , Applied Mathematics E-Notes, 13(2013), 228-233.
  • [3] G.A. Afrouzi, A. Hadjian, S. Heidarkhani, S. Shokooh, In?nitely many solutions for Steklov problems associated to non- homogeneous differential operators through Orlicz-Sobolev spaces. Complex Var. Elliptic Equ. 60 (2015), no. 11, 1505-1521.
  • [4] M. Allaoui, A. R. El Amrouss, A. Ourraoui, Existence results for a class of p(x)−Laplacian problems in R N . Computers & Mathematics with Applications 69(7): (2015) 582-591.
  • [5] M. Allaoui, A.R. El Amrouss, A. Ourraoui, Existence and multiplicity of solutions for a Steklov problem involving the p(x)-Laplacian operator, EJDE 132(2012) 1-12.
  • [6] M. Allaoui, A.R. El Amrouss, A. Ourraoui, Existence of infinitely many solutions for a Steklov problem involving the p(x)-Laplace operator, EJQTDE. 2014, No. 20, 1-10. [7] An. Lê, On the ?rst eigenvalue of the Steklov eigenvalue problem for the infinity Laplacian, EJDE Vol. 2006(2006), No. 111, 1-9. [8] A. Ayoujil, On the superlinear Steklov problem involving the p(x)-Laplacian, EJQTDE, 2014, No.38, 1-13.
  • [9] J.F. Bonder, J.D. Rossi, A nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding, Publicacions Matematiques, , (2002) 46:221-235.
  • [10] Y. Chen, S. Levine, R. Rao, Variable exponent, Linear growth functionals in image processing, SIAM J. Appl. Math. 66 (2006) 1383-1406.
  • [11] S.G. Deng, Eigenvalues of the p(x)-Laplacian Steklov problem J. Math. Anal. Appl. 339 (2008) 925-937.
  • [12] X.L. Fan, Global C 1, regularity for variable exponent elliptic equations in divergence form, J. Differential Equations 235 (2) (2007) 397-417.
  • [13] X.L. Fan , D.Zhao, On the spaces L p(x) (Ω) and W m,p(x) (Ω), J. Math. Anal. Appl. 263(2001) 424-446.
  • [14] X.L. Fan, J.S. Shen, D. Zhao, Sobolev embedding theorems for spaces W m,p(x) (Ω), J. Math. Anal. Appl. 262(2001) 749-760.
  • [15] G. Fragnelli, Positive periodic solutions for a system of anisotropic parabolic equations, J. Math. anal. Appl. 73 (2010), 110-121.
  • [16] Juliano D.B. de Godo, Olímpio. H. Miyagaki, Rodrigo S. Rodrigues, On Steklov-Neumann boundary value problems for some quasilinear elliptic equations, Applied Mathematics Letters 45 (2015) 47-51.
  • [17] B. Karim, A. Zerouali and O. Chakrone, Existence and multiplicity of a-harmonic solutions for a Steklov problem with variable exponents, Bol. Soc. Paran. Mat., 2018, (3s)v. 32 2(2018), pp. 125-136.
  • [18] S. Kesavan, Topics in Functional Analysis and Applications, John Wiley & Sons, New York, 1989.
  • [19] O. Kovácik, J. R akosník; On spaces L p(x) and W k,p(x) , Czechoslovak Math. J. 41(1991) 592-618.
  • [20] A. Ourraoui, Multiplicity results for Steklov problem with variable exponent, Applied Mathematics and Computation 277(2016)34-43.
  • [21] M. Ruzicka, Electrorheological fluids: modeling and mathematical theory, 1748, Springer-Verlag, Berlin, 2000.
  • [22] O. Torné, Steklov problem with an indefinite weight for the p−Laplacian, Electron. J. Differential Equations 2005 (2005), no. 87, 8 pp.
  • [23] V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Mathematics of the USSR-Izvestiya, vol. 9 (1987) 33-66.