Geometric interpretations and reversed versions of Young's integral inequality

Geometric interpretations and reversed versions of Young's integral inequality

The authors retrospect Young's integral inequality and its geometric interpretation, recall a reversed version of Young's integral inequality, present a geometric interpretation of the reversed version of Young's integral inequality, and conclude a new reversed version of Young's integral inequality. The authors retrospect Young's integral inequality and its geometric interpretation, recall a reversed version of Young's integral inequality, present a geometric interpretation of the reversed version of Young's integral inequality, and conclude a new reversed version of Young's integral inequality.                                                                                                                                                                                                                .

___

  • [1] D. R. Anderson, Young’s integral inequality on time scales revisited, J. Inequal. Pure Appl. Math. 8 (2007), no. 3, Art. 64; http://www.emis.de/journals/JIPAM/ article876.html.
  • [2] R. P. Boas Jr. and M. B. Marcus, Generalizations of Young’s inequality, J. Math. Anal. Appl. 46 (1974), no. 1, 36–40; https://doi.org/10.1016/0022-247X(74)90279-0.
  • [3] R. P. Boas Jr. and M. B. Marcus, Inequalities involving a function and its inverse, SIAM J.Math. Anal. 4 (1973), 585–591; https://doi.org/10.1137/0504051.
  • [4] R. Cooper, Notes on certain inequalities: (1); Generalization of an inequality of W. H.Young, J. London Math. Soc. 2 (1927), no. 1, 17–21;https://doi.org/10.1112/jlms/s1-2.1.17.
  • [5] R. Cooper, Notes on certain inequalities: II, J. London Math. Soc. 2 (1927), no. 3, 159–163; https://doi.org/10.1112/jlms/s1-2.3.159.
  • [6] F. Cunningham, Jr. and N. Grossman, On Young’s inequality, Amer. Math. Monthly 78 (1971), no. 7, 781–783; https://doi.org/10.2307/2318018.
  • [7] J. B. Diaz and F. T. Metcalf, An analytic proof of Young’s inequality, Amer. Math. Monthly 77 (1970), no. 6, 603–609;https://doi.org/10.2307/2316736.
  • [8] A. Hoorfar and F. Qi, A new refinement of Young’s inequality, Math. Inequal. Appl. 11 (2008), no. 4, 689–692; https://doi.org/10.7153/mia-11-58.
  • [9] I. C. Hsu, On a converse of Young’s inequality, Proc. Amer. Math. Soc. 33 (1972), 107–108; https://doi.org/10.2307/2038179.
  • [10] J. Jaksetic and J. Pecaric, An estimation of Young inequality, Asian-Eur. J. Math. 2 (2009), no. 4, 593–604; https://doi.org/10.1142/S1793557109000509.
  • [11] J. Jaksetic and J. Pecaric, A note on Young inequality, Math. Inequal. Appl. 13 (2010), no. 1, 43–48; https://doi.org/10.7153/mia-13-03.
  • [12] I. A. Lackovic, A note on a converse of Young’s inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 461497 (1974), 73–76.
  • [13] D. S. Mitrinovic, Analytic Inequalities, In cooperation with P. M. Vasi´ c, Die Grundlehren der mathematischen Wissenschaften, Band 165, Springer-Verlag, New York-Berlin, 1970.
  • [14] D. S. Mitrinovic, J. E. Pecari´ c, and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993; http://dx.doi.org/10.1007/978-94-017-1043-5.
  • [15] F.-C. Mitroi and C. P. Niculescu, An extension of Young’s inequality, Abstr. Appl. Anal. 2011, Art. ID 162049, 18 pages; https://doi.org/10.1155/2011/162049.
  • [16] A. Oppenheim, Note on Mr. Cooper’s generalization of Young’s inequality, J. London Math. Soc. 2 (1927), no. 1, 21–23; https://doi.org/10.1112/jlms/s1-2.1.21.
  • [17] Z. Pales, A general version of Young’s inequality, Arch. Math. (Basel) 58 (1992), no. 4,360–365; https://doi.org/10.1007/BF01189925.
  • [18] Z. Pales, A generalization of Young’s inequality, in General Inequalities, 5 (Oberwolfach, 1986), 471–472, Internat. Schriftenreihe Numer. Math., 80, Birkhäuser, Basel, 1987.
  • [19] Z. Pales, On Young-type inequalities, Acta Sci. Math. (Szeged) 54 (1990), no. 3-4, 327–338.
  • [20] F. D. Parker, Integrals of inverse functions, Amer. Math. Monthly 62 (1955), no. 6, 439–440; https://doi.org/10.2307/2307006.
  • [21] F. Qi, W.-H. Li, G.-S. Wu, and B.-N. Guo, Re?nements of Young's integral inequality via fundamental inequalities and mean value theorems for derivatives, Chapter 8 in: Hemen Dutta (ed.), Topics in Contemporary Mathematical Analysis and Applications, pp. 193-227, CRC Press, 2021; available online at https://doi.org/10.1201/9781003081197-8.
  • [22] D. Ruthing, On Young’s inequality, Internat. J. Math. Ed. Sci. Techn. 25 (1994), no. 2, 161–164; https://doi.org/10.1080/0020739940250201.
  • [23] T. Takahashi, Remarks on some inequalities, Tôhoku Math. J. 36 (1932), 99–106.
  • [24] J.-Q. Wang, B.-N. Guo, and F. Qi, Generalizations and applications of Young’s integral inequality by higher order derivatives, J. Inequal. Appl. 2019, Paper No. 243, 18 pages; https://doi.org/10.1186/s13660-019-2196-2.
  • [25] A. Witkowski, On Young inequality, J. Inequal. Pure Appl. Math. 7 (2006), no. 5, Art. 164; http://www.emis.de/journals/JIPAM/article782.html.
  • [26] F.-H. Wong, C.-C. Yeh, S.-L. Yu, and C.-H. Hong, Young’s inequality and related results on time scales, Appl. Math. Lett. 18 (2005), no. 9, 983–988; https://doi.org/10.1016/j.aml.2004.06.028.
  • [27] W. H. Young, On classes of summable functions and their Fourier series, Proc. Roy. Soc. London Ser. A 87 (1912), 225–229; https://doi.org/10.1098/rspa.1912.0076.
  • [28] L. Zhu, On Young’s inequality, Internat. J. Math. Ed. Sci. Tech. 35 (2004), no. 4, 601–603; https://doi.org/10.1080/00207390410001686698.