Dental İmplant Yüzey Özellikleri ve Biyolojik Ortamla Etkileşimler: Bölüm II: İmplant Yüzeyleri ve Özellikleri

Titanyum ve alaşımları, yüksek biyouyumluluk ve üstün mekanik özelliklerine bağlı olarak dişhekimliğinde kemik içi implantlar için en çok tercih edilen materyallerdir. Titanyum dental implantların yüzey özellikleri doku reaksiyonlarını düzenleyebilmektedir. İmplant yüzey özellikleri topografik ve kimyasal özellikler olmak üzere iki kategoriye ayrılmaktadır. Topografi yüzeyin pürüzlülük derecesi ve yüzey düzensizliklerinin oryantasyonu ile ilişkilidir. Kimyasal özellikler yüzeyin kimyasal kompozisyonunu içermektedir. Bu makalede titanyum dental implantların temel yüzey özellikleri gözden geçirilmiş ve literatür bulguları eşliğinde sunulmuştur

Surface Properties of Dental İmplants and İnteractions With The Biological Enviroment: Part II: İmplant Surfaces and Properties

Titanium and its alloys are the most commonly preferred materials for endosseous implants in dentistry due to the high degree of biocompatibility and good mechanical properties. The surface properties of titanium dental implants can modulate tissue reactions. Important surface properties are divided into two categories: topographical and chemical properties. Topography is associated with the degree of roughness of the surface and the orientation of surface irregularities. Chemical properties include chemical composition of the surface. In this paper the main surface properties of titanium dental implants are reviewed and presented with the literature findings

___

  • Ellingsen JE. Surface configurations of dental imp- lants. Periodontol. 2000. 17: 36-46, 1998.
  • Rupp F., Scheideler L., Rehbein D., Axmann D., Geis- Gerstorfer J. Roughness induced dynamic changes of wettability of acid etched titanium imp- lant modifications. Biomaterials. 25: 1429-1438, 2004.
  • Steinemann SG. Titanium- the material of choice? Peridontol. 2000. 17:7-21, 1998.
  • Oshida Y. Bioscience and Bioengineering of Tita- nium Materials Elsevier; 2006.
  • Puelo DA., Thomas MV. Implant Surfaces. Dent. Clin. N. Am. 50: 323-338, 2006.
  • Vörös J, Wieland M, Ruiz- Taylor L, Textor M, Bru- nette DM. Characterization of Titanium Surfaces. Titanium in Medicine . New York: Springer; 2001.
  • Albrektsson T, Wennerberg A. Oral implant surfa- ces: Part 1-Review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int. J. Prosthodont. 17:536- 543, 2004.
  • Chang PC., Lang NP.,Giannobile WV. Evaluation of functional Dynamics during osseointegration and regeneration associated with oral implants: A revi- ew. Clin. Oral Implants Res. 21:1-12, 2010.
  • Gittens RA., McLachlan T., Olivares-Navarrete R., Cai Y., Berner S., Tannenbaum R., Scwartz Z., Sandhage KH., Boyan BD. The effects of combined micron-/submicron-scale surface roughness and na- noscale features on cell proliferation and differenti- ation. Biomaterials. 32: 3395-3403, 2011.
  • Lavenus S., Louarn G., Layrolle P. Nanotechnology and dental implants. Int. J. Biomater. 915327, 2010.
  • Le Guéhennec L., Soueidan A., Layrolle P., Amou- riq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 23: 844- 854, 2007.
  • Lorenzoni M., Pertl C., Zhang K., Wimmer G., Walther A. Immediate loading of single-tooth imp- lants in the anterior maxilla. Preliminary results after one year. Clin. Oral Implants Res. 14: 180-187, 2003.
  • Klinger MM., Rahemtulla F., Prince CW., Lucas LC., Lemons JE. Proteoglycans at the bone-implant interface. Crit. Rev. Oral Biol. Med. 9: 449-463, 1998.
  • Mendoça G., Mendoça DB., Arago FJ., Cooper LF. Advancing dental implant surface technology- from micron to surface nanotopography. Biomateri- als. 29: 3822-3835, 2008.
  • Wennerberg A., Hallgren C., Johansson C., Da- nelli S.A histomorphometric evaluation of screw- shaped implants each prepared with two syrface roughnesses. Clin. Oral Implants Res. :11-19, 1999.
  • Buser D., Schenk R., Steinemann S., Fiorellini J., Fox C., Stich H. Influence of surface characteristics on bone integration of titanium implants. A histo- morphometric study in miniature pigs. J. Biomed. Mater. Res. 25: 889-902, 1991.
  • Gotfredsen K., Wennerberg A., Johansson C., Skovgaard LT., Hjorting-Hansen E. Anchorage of TiO2-blasted , HA-coated, and machined implants.: an experimental study with rabbits. J. Biomed. Ma- ter. Res. 29: 1223-1231, 1995.
  • Stevens MM., George JH. Exploring and enginee- ring the cell surface interface. Science 310:1135- 1138, 2005.
  • Meirelles L. On nanosize structures for enhan- ced early bone formation. Thesis. Department of Prosthodontics,Dental materials science,department of biomaterials, Göteborg University 2007.
  • Wennerberg A., Albrektsson T., Andersson B., Krol J. A histomorphometric study of screw-shaped titanium implants with three surface topographies. Clin. Oral Implants Res. 6: 24-30, 1995.
  • Wennerberg A., Albrektsson T.,Laussma J. A torque and histomorphometric evaluation of cp. Titanium screws, blasted with 25µm and 75 µm sized partic- les of Al2O3. J. Biomed. Mater. Res. 30: 251-260, 1996.
  • Gotfredsen K., Berglundh T., Lindhe J. Anchorage of titanium implants with different surface characte- ristics: An experimental study in rabbits. Clin. Imp- lants Dent. Relat. Res. 2: 120-128, 2002.
  • Ronold HJ., Ellingsen JE. Effect of micro-roughness produced by TiO2 blasting-tensile testing of bone attachment by using coin-shaped implants. Bioma- terials. 23: 4211-4219, 2002.
  • Park JY., Gemmell CH., Davies JE. Platellet intera- ctions with titanium: modulation of platellet activity by surface topography. Biomaterials. 22: 2671- 2682, 2001.
  • Park JY., Davies JE. Red blood cell and platellet in- teractions with titanium implant surfaces. Clin. Oral Imp Res 2000: 11. 530-539.
  • Marco F., Milena F., Gianluca G., Vittoria O. Pe- ri-implant osteogenesis in health and osteoporosis. Micron 36: 630-644, 2005.
  • Becker W.,Becker B., Ricci A., Bahat O., Rosen- berg E., Rose LF., Handelsman M., Israelson H. A prospective multicenter clinical trial comparing one- and two- stage ttitanium screw-shaped fixtures with one-stage plasma-sprayed solid-screw fixtures. Clin. Implant Dent. Relat. Res. 2: 159-165, 2000.
  • Astrand P., Anzen B., Karlsson U., Saltholm S. Swardstrom P., Hellem S. Nonsubmerged imp- lants in the treatment of the edentulous upper jaw: A prospective clinical and radiological study of ITI implants-Results after 1 year. Clin Implant Dent. Re- lat. Res. 2:166-174, 1998.
  • Norton M. Marginal bone levels at single tooth implants with a conical fixture design. The influen- ce of surface macro- and micro-structure. Clin Oral Implants Res. 9:91-99, 1998.
  • Palmer R., Palmer P., Smith B. A 5-year prospective study of Astra single tooth implants. Clin. Oral Imp- lants Res. 11:179-182, 2000.
  • Davies JE. Bone Engineering. Em Squared Inc., To- ronto: 1999.
  • Ellingsen JE, Thomsen P, Lyngstadaas P. Advances in dental materials and tissue regeneration. Perio- dontol. 2000. 41: 136-156, 2006.
  • Rupp F., Scheideler L., Olshanska N., de Wild M., Wieland M., Geis-Gerstorfer J. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant sur- faces. J. Biomed. Mater. Res. A. 76: 323-334, 2006.
  • Buser D., Broggini N., Wieland M., Schenk RK., Denzer AJ., Cochran DL., Hoffmann B., Lussi A., Steinemann SG. Enhanced bone response to a chemically modified SLA titanium surface. J. Dent. Res. 83: 529-533, 2004
  • Eriksson C., Nygren H., Ohlson K. Implantation of hydrophobic titanium discs in rat tibia: cellular re- actions on the surfaces during the first 3 weeks in bone. Biomaterials 25: 4759-4766, 2004.
  • Zhao G., Schwartz Z., Wieland M., Rupp F., Geis-Gerstorfer J., Cochran DL., Boyan BD. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A: 74: 49-58, 2005.
  • Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 21: 667-681, 2000.