Kitosan ve Dekstran Bazlı Tozlar – Hazırlık, Performans Karşılaştırması ve Latent Parmak İzlerinin Adli İncelemesindeki Potansiyel Uygulama

Papiller çizgiler her birey için benzersizdir ve bu özellik, bireyleri tanımlamak ve ayırt etmek için modern adli bilimde sıkça kullanılmaktadır. Suç mahallerinde genellikle parmak izleri bulunur, ancak bu izler genellikle daha sonraki işlemlerden önce görselleştirilmesi gereken latent (görünmez) izler şeklindedir. Rutin olarak kullanılan birçok ticari yöntem insan sağlığı üzerinde zararlı etkiler gösterebilmekte, bu nedenle araştırma grupları sürekli olarak yeni yaklaşımlar geliştirmeye veya iyileştirmeye çalışmaktadırlar. Bazıları bu amaçla biyo(polimerik) materyallerin kullanımına başvurmaktadırlar. Bu makale, latent parmak izlerini görselleştirmede potansiyel uygulamalarını değerlendirmek için hazırlanan ve karakterize edilen kitosan ve dekstran bazlı biyotozları ele almaktadır. Kitosan ve dekstran, tıbbi ve farmasötik uygulamalarda yaygın olarak kullanılmakla birlikte, bu biyopolimerlerin parmak izi tozu bileşeni olarak kullanılmasıyla ilgili sadece birkaç çalışma bulunmaktadır. Bu biyopolimerik materyaller, toksik olmayan özellikler, spesifik bağlanma mekanizmaları sunar ve maliyet-fayda taleplerini de karşılarlar. İki kitosan bazlı ve bir dekstran bazlı formülasyon, basit sentez süreçlerinde elde edildi. FT-IR analizleri, hazırlanan sistemlerin bileşenleri arasındaki etkileşimleri onaylamıştır. Optik mikroskopi, hazırlanan toz formülasyonlarının küçük ve düzenli dağılmış partiküllere sahip olduğunu, bu partiküllerin parmak izi izinde bulunan ter ve lipid kalıntılarına kolayca bağlandığını göstermiştir. Hazırlanan formülasyonlar lastik (yarı gözenekli) ve cam (gözeneksiz) yüzeylerde test edilmiştir. Sonuçlar, elde edilen biyo-bazlı tozların, latent parmak izlerini tespit etmede ve artırmada ticari olarak kullanılan fiziksel sistemlere/parmak izi tozlarına eşlik edebileceğini göstermiştir.

Chitosan And Dextran Based Powders – The Preparation, Performance Comparison and Potential Application in Forensic Examination of Latent Fingermarks

The papillary lines are unique for each person, and that feature is frequently used in modern forensic science to identify and distinguish individuals. Fingerprints are often present at the crime scene, but they are usually in the form of latent (invisible) marks which need to be visualized prior to the further processing. Many routinely employed commercial methods show harmful effect on human health, so the research groups are constantly trying to improve or develop some new approaches, and some of them are resorting to the utilization of bio(polymeric) materials. This paper deals with chitosan- and dextran-based biopowders prepared and characterized to evaluate their potential application in visualizing latent fingermarks. Chitosan and dextran are widely used in medicinal and pharmaceutical applications, but there are only a few studies regarding the utilization of these biopolymers as a component for the fingerprint powder. These biopolymeric materials offer many benefits, such as non-toxic properties, specific binding mechanisms, and they also satisfy the cost-benefit demands. Two chitosan-based formulations and one dextran-based formulation were obtained in simple synthesis processes. FT-IR analyses confirmed interactions between components of prepared systems. Optical microscopy showed that prepared powder formulations possess small and uniformly distributed particles, which contributed to their easy binding to the sweat and lipid residues present in the fingerprint trace. Prepared formulations were tested on a rubber (semi-porous) and glass (non-porous) surface. The results indicated that the obtained bio-based powders have the potential to complement commercially exploited physical systems/fingerprint powders in detecting and enhancing latent fingermarks.

___

  • Adjé, F., Lozano, Y. F., Lozano, P., Adima, A., Chemat, F., & Gaydou, E. M. (2010). Optimization of anthocyanin, flavonol and phenolic acid extractions from Delonix regia tree flowers using ultrasound-assisted water extraction. Industrial Crops and Products, 32, p.439–444.
  • Bumbrah, G. S., Sharma, R., & Jasuja, O. (2016). Emerging latent fingerprint technologies: a review. Research and Reports in Forensic Medical Science, 6, p.39-50.
  • Cakić, M., Nikolić, G., Ilić, L., & Stanković, S. (2005). Synthesis and FTIR Characterization of Some Dextran Sulphates. CI&CEQ, 1(2), p.1-5.
  • Carp, O., Patron, L., Culita, D. C., Budrugeac, P., Feder, M., & Diamandescu, L. (2010). Thermal analysis of two types of dextran-coated magnetite. Journal of Thermal Analysis and Calorimetry, 101(1), p.181–187.
  • Champod, C., Lennard, C. J., Margot, P., & Stoilovic, M. (2004). Fingerprints and Other Ridge Skin Impressions (2nd ed.). Boca Raton, Florida: CRC Press, Taylor & Francis.
  • Chandrasekhar, J., Madhusudhan, M. C., & Raghavarao, K. S. (2012). Extraction of anthocyanins from red cabbage and purification using adsorption. Food and Bioproducts Processing, 90(4), p.615–623.
  • Chiu, H.-C., Hsiue, T., & Chen, W.-Y. (2004). FTIR-ATR measurements of the ionization extent of acrylic acid within copolymerized methacrylated dextran/acrylic acid networks and its relation with pH/salt concentration-induced equilibrium swelling. Polymer, 45(5), p.1627-1636.
  • Choi, M. J., McDonagh, A., Maynard, P., & Roux, C. (2008). Metal-containing nanoparticles and nano-structured particles in fingermark detection. Forensic Science International, 179(2-3), p.87-97.
  • Costa, C. V., Gama, L. I. L. M., Damasceno, N. O., Assis, A. M. L., Soares, W. M. G., Silva, R. C., Tonholo, J., & Ribeiro, A. S. (2020). Bilayer systems based on conjugated polymers for fluorescence development of latent fingerprints on stainless steel. Synthetic Metals, 262, 116347.
  • Datta, A. K., Lee, H. C., Ramotowski, R., & Gaensslen, R. E. (2001). Advances in Fingerprint Technology (2nd ed.). CRC Press, Taylor & Francis.
  • Ding, L., Peng, D., Wang, R., & Li, Q. (2021). A user-secure and highly selective enhancement of latent fingerprints by magnetic composite powder based on carbon dot fluorescence. Journal of Alloys and Compounds, 856, 158160.
  • Dudhani, A. R., & Kosaraju, S. L. (2010). Bioadhesive chitosan nanoparticles: Preparation and characterization. Carbohydrate Polymers, 81(2), p.243-251.
  • Durose, M. R., Burch, A. M., Walsh, K., & Tiry, E. (2016). Publicly Funded Forensic Crime Laboratories: Resources and Services, 2014. Bureau of Justice Statistics.
  • Guerrero, P., Kerry, J. P., & de la Caba, K. (2014). FTIR characterization of protein– polysaccharide interactions in extruded blends. Carbohydrate Polymers, 111, p.598-605.
  • Gürbüz, S., Özmen Monkul, B., İpeksaç, T., Gürtekin Seden, M., & Erol, M. (2015). A systematic study to understand the effects of particle size distribution of magnetic fingerprint powders on surfaces with various porosities. Journal of Forensic Sciences, 60(3), p.727-736.
  • Hejjaji, E., Smith, A., & Morris, G. (2017) (a). Designing chitosan-tripolyphosphate microparticles with desired size for specific pharmaceutical or forensic applications. International Journal of Biological Macromolecules, 95, p.564–573.
  • Hejjaji, E., Smith, A., & Morris, G. (2017) (b). The potential of chitosan-tripolyphosphate microparticles in the visualisation of latent fingermarks. Food Hydrocolloids, 71, p.290-298.
  • International Fingerprint Research Group (IFRG). (2014). Guidelines for the Assessment of Fingermark Detection Techniques. Accessed June 18, 2022. https://ifrg.unil.ch/wpcontent/ uploads/2014/06/IFRG-Research-Guidelines-v1-Jan-2014.pdf.
  • Lennard, C. (2007). Fingerprint detection: current capabilities. Australian Journal of Forensic Sciences, 39(2), p. 55-71.
  • Maltoni, D., Maio, D., Jain, A. K., & Prabhakar, S. (2009). Handbook of Fingerprint Recognition (2nd ed.). Springer.
  • Mehta, R. V., Rucha, D., Bhatt, P., & Upadhyay, R. V. (2006). Synthesis and characterization of certain nanomagnetic particles coated with citrate and dextran molecules. Indian Journal of Pure and Applied Physics, 44(7), p.537-542.
  • Milašinović, N. (2016). Polymers in Criminalistics: Latent Fingerprint Detection and Enhancement – From Idea to Practical Application. NBP – Journal of Criminalistics and Law, p.133-148.
  • Milašinović, N., & Koturević, B. (2016). Uvod u hemiju: praktikum za laboratorijske vežbe. Belgrade: Academy of Criminalistic and Police Studies.
  • Milašinović, N., Čalija, B., Vidović, B., Crevar Sakač, M., Vujić, Z., & Knežević-Jugović, Z. (2016). Sustained release of α-lipoic acid from chitosan microbeads synthetized by inverse emulsion method. Journal of the Taiwan Institute of Chemical Engineers, 60, p.106-112.
  • Mitić, Ž., Cakić, M., & Nikolić, G. (2010). Fourier-Transform IR spectroscopic investigations of Cobalt(II)–dextran complexes by using D2O isotopic exchange. Spectroscopy, 24, p.269–275.
  • Mozayani, A., & Noziglia, C. (2006). The Forensic Laboratory Handbook Procedures and Practice. Totowa, New Jersey: Humana press.
  • Nikolić, G. S., Cakić, M., Mitić, Ž., & Ilić, L. (2008). Deconvoluted Fourier-transform LNT-IR study of coordination copper(II) ion compounds with dextran derivatives. Russian Journal of Coordination Chemistry, 34(5), p.322–328.
  • Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31, p.603-632.
  • Roddick-Lanzilotta, A. D., Connor, P. A., & McQuillan, A. J. (1998). An In Situ Infrared Spectroscopic Study of the Adsorption of Lysine to TiO2 from an Aqueous Solution. Langmuir, 14, p.6479-6484.
  • Sato, K., Kang, W. H., Saga, K., & Sato, K. T. (1989). Biology of sweat glands and their disorders. I. Normal sweat gland function. Journal of the American Academy of Dermatology, 20(4), p.537-563.
  • Sen, D., Mohite, B., & Kayande, N. (2019). Review on Polymer. International Journal of Pharmaceutical Sciences and Medicine, 4(10), p.1-15.
  • Sonne, W. J. (2006). Criminal Investigation for the Professional Investigator (1st ed.). Boca Raton: Taylor & Francis.
  • Vučković, N., Dimitrijević, S., & Milašinović, N. (2020). Visualization of Latent Fingerprints Using Dextran-based Micropowders Obtained From Anthocyanin Solution. Turkish Journal of Forensic Sciences and Crime Studies, 2(2), p.3–53.
  • Vučković, N., Glođović, N., Radovanović, Ž., Janaćković, Đ., & Milašinović, N. (2020). A novel chitosan/tripolyphosphate/L-lysine conjugates for latent fingerprints detection and enhancement. Journal of Forensic Sciences, 66(1), 149–160. doi:DOI: 10.1111/1556-4029.14569
  • Wang, K., & Liu, Q. (2014). Chemical structure analyses of phosphorylated chitosan. Carbohydrate Research, 386, p.48-56.
  • Wang, R., Dijkstra, P. J., & Karperien, M. (2016). Dextran. In N. M. Neves, & R. I. Reis (Eds.), Biomaterials from Nature for Advanced Devices and Therapies New Jersey: John Wiley & Sons, Inc., p. 307-316.
  • Wasiak, I., Kulikowska, A., Janczewska, M., Michalak, M., Cymerman, I. A., Nagalski, A., Kallinger, P., Szymanski, W. W., & Ciach, T. (2016). Dextran Nanoparticle Synthesis and Properties. PLOS ONE, 11(1), p.1-17.
  • Weyermann, C., Roux, C., & Champod, C. (2011). Initial Results on the Composition of Fingerprints and its Evolution as a Function of Time by GC/MS Analysis. Journal of Forensic Sciences, 56(1), p.102-108.
  • Žalnėravičius, R., Paškevičius, A., Mažeika, K., & Jagminas, A. (2018). Fe(II)-substituted cobalt ferrite nanoparticles against multidrug resistant microorganisms. Applied Surface Science, 435, p.141-148.