Lambda Kanatlı İnsansız Hava Aracı İçin Sayısal Modelleme

Bu Çalışmada, kiriş uzunluğu c=210 mm, süpürme açısı Λ=51°, kalınlığı 3 mm ve rüzgar yönüne 58° açı ile eğimli hücum kenarına sahip lambda kanadının düşük hızlı aerodinamik performansı nümerik olarak incelenmiştir. Spalart-Allmaras türbülans modeli ile Reynolds Ortalama Navier Stokes (RANS) teorem denklemleri, kanat yüzeyi etrafındaki sıkıştırılamaz akış için 45°'lik bir hücum açısına kadar çözülmüş ve hesaplamalı akışkanlar dinamiği yaklaşımlarının simülasyon etkinliğini doğrulamak için deneysel verilerle karşılaştırılmıştır. Ön uç girdabının (LEV) gelişimi ve oluşumu, akışın yüzey ile etkileşimi, akış ayrımları ve stol dahil olmak üzere lambda kanadının aerodinamik performansı hakkında ayrıntılar incelenmiş ve tartışılmıştır. LEV oluşumu 5°'lik hücum açısında oluşmaya başlamış, 20°'lik eğimde hücum kenarı boyunca yarı yolda girdap kırılması gözlemlenmiş, son olarak hücum açısı 30° olduğunda, stol durumuna geçmiştir.
Anahtar Kelimeler:

LEV, CFD, delta wing, lambda wing

NUMERICAL INVESTIGATION OF FLOW CHARACTERISTICS OF A NON-SLENDER LAMBDA WING UNMANNED AERIAL VEHICLE

In this paper, the low-speed aerodynamic performance of lambda wing with a chord length of c=210 mm and sweep angle of Λ =51°, thickness 3 mm, and beveled leading edges on the windward side with an angle of 58° is investigated numerically. Reynolds Average Navier Stokes (RANS) theorem equations with Spalart-Allmaras turbulence model were solved up to an angle of attack 45° for incompressible flow around the wing surface and, are compared to experiment to corralete simulation precision of computational fluid dynamic approaches. Detail about the aerodynamic performance of lambda wing including development and formation of the leading-edge vortex (LEV), the interaction of flow with the surface, flow separations, and stall are studied, presented, and discussed. LEV was started at 5°, vortex breakdown was observed at halfway along the leading edge at the angle of 20°, finally, by the time angle is 30°, bursting vortex gives a way to stall stage.

___

  • Sepulveda, E., and H. Smith. "Technology challenges of stealth unmanned combat aerial vehicles." The Aeronautical Journal 121.1243 (2017): 1261-1295.
  • NASA. Boeing’s Phantom Ray Makes First Flight. 2011. Available at: http://www.nasa.gov (Accessed: 11 March 2018)
  • LARRINAGA N DE., IHS L., WEEKLY D. Neuron completes Italian flight trials. IHS Jane’s Defence Weekly. London; August 2015; Available at: http://www.janes.com (Accessed: 11 March 2018).
  • BEALE J. Top secret UK drone Taranis makes first flight. BBC News. February 2014; Available at: http://www.bbc.co.uk (Accessed: 11 March 2018).
  • PUBBY M. Government set to clear Rs 3,000 core plan to develop engine for India’s first UCAV. The Economic Times. 2015. Available at: http://economictimes.indiatimes.com (Accessed: 11 March 2018).
  • HSU B. China’s ‘Sharp Sword’ UCAV is Spotted Taxiing. AIN online. May 2013; Available at: http://www.ainonline.com (Accessed: 11 March 2018).
  • Cummings, Russell M., Scott A. Morton, and Stefan G. Siegel. "Numerical prediction and wind tunnel experiment for a pitching unmanned combat air vehicle." Aerospace Science and Technology 12.5 (2008): 355-364.
  • Manshadi, M. D., Eilbeigi, M., Sobhani, M. K., Zadeh, M. B., & Vaziry, M. A. (2016). Experimental study of flow field distribution over a generic cranked double delta wing. Chinese Journal of Aeronautics, 29(5), 1196-1204.
  • Yaniktepe, B., and D. Rockwell. "Flow structure on diamond and lambda planforms: Trailing-edge region." AIAA journal 43.7 (2005): 1490-1500.
  • Sahin, B., Tasci, M. O., Karasu, I., & Akilli, H. (2017). Flow structures in end-view plane of slender delta wing. In EPJ Web of Conferences (Vol. 143, p. 02099). EDP Sciences.
  • Huber, K., Schutte, A., & Rein, M. (2012). Numerical investigation of the aerodynamic properties of a flying wing configuration. In 30th AIAA Applied Aerodynamics Conference (p. 3325).
  • Ghoreyshi, M., Young, M. E., Lofthouse, A. J., Jirásek, A., & Cummings, R. M. (2016). Numerical Simulation and Reduced-Order Aerodynamic Modeling of a Lambda Wing Configuration. Journal of Aircraft, 55(2), 549-570.
  • Cummings, R. M., & Schütte, A. (2013). Detached-Eddy Simulation of the vortical flow field about the VFE-2 delta wing. Aerospace Science and Technology, 24(1), 66-76.
  • Xu, X., & Zhou, Z. (2016). Analytical study on the synthetic jet control of asymmetric flow field of flying wing unmanned aerial vehicle. Aerospace Science and Technology, 56, 90-99.
  • Nematollahi, O., Nili-Ahmadabadi, M., Seo, H., & Kim, K. C. (2019). Effect of acicular vortex generators on the aerodynamic features of a slender delta wing. Aerospace Science and Technology.
  • Ghazijahani, M. S., & Yavuz, M. M. (2019). Effect of thickness-to-chord ratio on aerodynamics of non-slender delta wing. Aerospace Science and Technology.
  • Yaniktepe, B., Coşkun Ozalp, and Çetin Canpolat. "Aerodynamics and Flow Characteristics of X-45 Delta Wing Planform." Kahramanmaras Sutcu Imam University Journal of Engineering Sciences 19.1 (2016): 1-10.
  • Arroyo M.P., Greated C.A. (1991). “Stereoscopic Particle Image Velocimetry “Measurement Science & Technology, Vol.2, No.12, pp.1181-1186.
  • Westerweel J. (1993). “Digital Particle Image Velocimetry, Theory and Application”, Delft University Press,.
  • Adrian R. J. (2005). “Twenty Years of Particle Image Velocimetry”, Experimental Fluids, Vol.39, pp.159–16.
  • Raffel M., Willert, C.E., Wereley, S.T., Kompenhans, J. (2007). “Particle Image Velocimetry: A Practical Guide” 2nd ed., Springer.
  • Pardiso, “Parallel Sparse Direct And Multi - Recursive Iterative Linear Solvers”, User Guide Version 6.0, https://pardiso-project.org [accessed 20 February 2019].
  • D.C. Wilcox, Turbulence Modeling for CFD, 2nd ed., DCW Industries, 1998.
  • “The Spalart-Allmaras Turbulence Model,” http://turbmodels.larc.nasa.gov/spalart.html. (Accessed: 11 March 2018).
  • Douvi, C., Eleni T.I., Athanasios, P., Margaris P., “Evaluation of the turbulence models for the simulation of the flow over a National Advisory Committee for Aeronautics (NACA) 0012 airfoil,” Journal of Mechanical Engineering Research Vol. 4(3), 2012, pp. 100-111.
  • COMSOL CFD Module user guide, http://www.comsol.com, 2017
  • Sogukpinar, H. Low speed Numerical Aerodynamic Analysis of New Designed 3D transport Aircraft. International Journal of Engineering Technologies, 4(4), 153-160.
  • Sogukpinar, H. (2019). Numerical Investigation of Influence of Diverse Winglet Configuration on Induced Drag. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 1-13.
  • Yayla, S., Canpolat, C., Sahin, B., & Akilli, H. (2013). The effect of angle of attack on the flow structure over the nonslender lambda wing. Aerospace Science and Technology, 28(1), 417-430.
  • Canpolat, C., Yayla, S., Sahin, B., & Akilli, H. (2009). Dye visualization of the flow structure over a yawed nonslender delta wing. Journal of Aircraft, 46(5), 1818-1822.
  • Gordnier, R. E., & Visbal, M. R. (2005). Compact Difference Scheme Applied to Simulation of Low-Sweep Delta Wing Flow. AIAA journal, 43(8), 1744-1752.