KÜRESEL CİSİMLERİN POZİSYON KESTİRİMİNDE KUATERNİYON YAKLAŞIMLARININ DEĞERLENDİRİLMESİ - SIZINTI TESPİT TOPU UYGULAMASI

Su kaynaklarının azalması sebebiyle alınan önlemlerden biri su iletim hattında oluşan sızıntı konumlarının doğru tespitidir. Bu nedenle sızıntı tespiti ile ilgili çalışmalar önem arz etmektedir. Bu çalışmada, su borularındaki sızıntı olan bölgelerin tespitinde kullanılmak üzere küre şeklinde bir top üretilmiş ve bu topun gezinti esnasında anlık konum bilgisinin en doğru hesaplanabileceği yöntemler araştırılmıştır. Xsens firmasının IMU sensörünü içeren topun belirli hareket güzergâhlarında gezintisi sağlanmış ve anlık ivme, açısal hız ve kuaterniyon verileri toplanmıştır. Kuaterniyon değerinin pozisyon üzerindeki etkisini analiz edebilmek için iki farklı Kuaterniyon hesaplama yaklaşımının (Madgwiwck ve Mahony) sonuçları değerlendirilmiştir. Deneysel çalışmalar, pozisyon tahmin doğruluğunun tatmin edici düzeyde olduğunu ve yapılan çalışmanın sızıntı tespit sistemlerinde kullanılabileceğini göstermektedir.

EVALUATION OF QUATERNION APPROACHES IN ESTIMATING THE POSITION OF SPHERICAL BODIES- LEACK DETECTION BALL APPLICATION

One of the measures taken due to the decrease in water resources is the accurate detection of leakage locations in the water transmission line. For this reason, studies on leak detection are important. In this study, a spherical ball was produced to be used in the leak detection areas in the water pipes and the methods by which the instant position information of this ball can be calculated most accurately were investigated. The ball containing the IMU sensor of Xsens company was provided to travel on certain movement paths and instantaneous acceleration, angular velocity and quaternion data were collected. In order to analyze the effect of quaternion on position, the results of two different Quaternion calculation approaches (Madgwick and Mahony) were evaluated. Experimental studies show that the position estimation accuracy is satisfactory and the study can be used in leak detection systems.

___

  • Hooda SM. Rajasthan Water Assessment: Potential for Private Sector Interventions, International Finance Corporation, World Bank, New Delhi, 2017.
  • Pilcher, R. Leak location and repair guidance notes and the never ending war against leakage, Proc. Water Loss 2, 2007.
  • Lowry WE., Dunn SD, Walsh R, Merewether D, Rao DV. Method and system to locate leaks in subsurface containment structures using tracer gases, US Patent 6035701A, March 2000.
  • Hunaidi O, Wang A, Bracken M, Gambino T, Fricke C, Detecting leaks in water distribution pipes, Arab Water World 2005; 29:4 52–55
  • Mishra A, Leakage detection using fiber optics distributed temperature sensing. 6th Pipeline Technology Conference 2011.
  • Demirci S, Yigit E, Eskidemir IH, Ozdemir C. Ground penetrating radar imaging of water leaks from buried pipes based on back-projection method NDT and E Int. 2012; 47 35–42.
  • Akkaya AE, Talu MF. Su boru hatlarında sızıntı konum tespiti için genişletilmiş kalman filtresi tabanlı IMU sensör füzyonu uygulaması. Journal of the Faculty of Engineering & Architecture of Gazi University 2017; 32(4): 1393-1404
  • Begovich O, Pizano-Moreno A, Garcia-Malacara E, Besancon G. How can the temperature affect the performance of a classical pipeline model when plastic pipes are used?. 2011 8th International Conference on Electrical Engineering, Computing Science and Automatic Control 2011; 1-6.
  • Ghazali MF. Leak detection using instantaneous frequency analysis PhD Thesis, University of Sheffield 2012.
  • Whaley RS, Reet JV, Nicholas RE, A tutorial on computer based leak detection methods, PSIG Annual Meeting 1992.
  • Zhang L, Wu Y, Guo L, Cai P, Design and implementation of leak acoustic signal correlator for water pipelines, Information Technology Journal, 2013; 12:11: 2195–2200.
  • Kousiopoulos GP, Papastavrou GN, Karagiorgos N, Nikolaidis S, Efstathiadis T, Kalfas A. Pip[eline Leak Localization Techniques. 2019 Panhellenic Conference on Electronics & Telecommunications (PACET) 2019; 1-4.
  • Srirangarajan S, Allen M, Preis A, Iqbal M, Lim HB, Whittle AJ. Wavelet-based burst event detection and localization in water distribution systems. Journal of Signal Processing Systems, 2013; 72(1): 1-16.
  • Tang X, Liu Y, Zheng L, Ma C, Wang H. Leak detection of water pipeline using wavelet transform method. 2009 International Conference on Environmental Science and Information Application Technology 2009; 2; 217-220
  • Kousiopoulos GP, Papastavrou GN, Karagiorgos N, Nikolaidis S, Efstathiadis T, Kalfas A. Pip[eline Leak Localization Techniques. 2019 Panhellenic Conference on Electronics & Telecommunications (PACET) 2019; 1-4.
  • Zhonghu L, Meili G, Wentao L, Luling W. Research of adaptive algorithm in water supply pipeline leak location. In 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC) 2017; 1-5.
  • El-Abbasy MS, Mosleh F, Senouci A, Zayed T, Al-Derham H. Locating leaks in water mains using noise loggers. Journal of Infrastructure Systems 2016; 22(3).
  • Abdulla MB, Herzallah RO, Hammad MA. Pipeline leak detection using artificial neural network: Experimental study. In 2013 5th International Conference on Modelling, Identification and Control (ICMIC) 2013; 328-332.
  • Guibin T, Shimin Z, Xiaoxiao Z, Liyun S, Qingbao Z. Research on Bypass-valve and its Resistance Characteristic of Speed Regulating PIG in Gas Pipeline, 2011 Third International Conference on Measuring Technology and Mechatronics Automation, 2011; 2:1114–1117.
  • Chastain-Howley A. Transmission main leakage: how to reduce the risk of a catastrophic failure. Leakage 2005; 12-14.
  • Mergelas B, Henrich G. Leak locating method for precommissioned transmission pipelines: North American case studies. Leakage, 2005; 12-14
  • https://puretechltd.com/technology/smartball-leak-detection/ (Erişim: 2022)
  • Thong YK, Woolfson MS, Crowe JA, Hayes-Gill BR and Jones DA. Numerical double integration of acceleration measurements in noise. Measurement, 36(1):73–92, 2004
  • Altmann S. L., Rotations, Quaternions, and Double Groups, Mineola, NY: Dover Publications, (2005)
  • Mahony R, Hamel T, Pflimlin JM. Nonlinear complementary filters on the special orthogonal group. IEEE Transactions on automatic control 2008; 53(5): 1203-1218.
  • Madgwick SO, Harrison AJ, Vaidyanathan R. Estimation of IMU and MARG orientation using a gradient descent algorithm. In 2011 IEEE international conference on rehabilitation robotics 2011; 1-7
  • Zevering J, BredenbeckA, Arzberger F, Borrmann D, and Nuechter A. IMU-based pose-estimation for spherical robots with limited resources. In 2021 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI) 2021; 1-8.