KAYMA EV GENIŞ MESNET ETKISINDEKI ÇUBUKLARIN GELIŞTIRILMIŞ RIJITLIK MATRISLERI IÇIN ANALITIK VE DENEYSEL BIR YAKLAŞIM

Bu çalışmada, aynı anda hem kayma ve hem geniş mesnet etkisindeki çerçeveler analitik, nümerik ve deneysel olarak incelenmiştir. Analitik çözüm için matris deplasman yöntemi, sayısal çözüm için sonlu elemanlar yöntemi kullanılmıştır. Hem kayma etkisi hem de geniş mesnet etkisini içeren rijitlik matrisi için açık denklemler ortaya konmuştur. Bunun için bir model çerçeve deneysel olarak test edildi ve maksimum çökme değeri elde edildi. Aynı çerçeve sonlu elemanlar yöntemi ile modellenerek ve ayrıca önerilen yöntem ile de çözüldü. Üç yöntemin sonuçları karşılaştırıldı. Önerilen yöntem başarıyla doğrulandı. Hem kayma hem de geniş destek etkilerini içeren önerilen yöntem sonuçlarının, deneysel sonuçlara ve sonlu elemanlar yöntemi sonuçlarına daha yakın olduğu görülmüştür.

AN ANALYTICAL AND EXPERIMENTAL APPROACH FOR IMPROVED STIFFNESS MATRIX OF BARS WITH SHEAR AND WIDE SUPPORT EFFECTS

In this study, frames including both the shear and the wide support effect was examined analytically, numerically and experimentally. Stiffness method was used for analytical solution and finite element method was used for numerical solution. Explicit expressions for the stiffness matrix that includes both the shear effect and the wide support effect are presented. A model frame was tested experimentally, and a maximum deflection result was obtained. The same frame was modeled and solved with the finite element method and with the proposed method. The results of three methods were compared. The proposed method was verified successfully. The proposed method, which includes both the shear and wide support effects, produced results that were shown to be closer to the experimental results and the results than were the results of the other models that were investigated. 

___

  • [1]. Dym, C.L., Structural Modeling and Analysis. Cambridge University Press (1997)
  • [2]. Megson, T.H.G., Structural and Stress Analysis. Butterworth-Heineman (2000)
  • [2]. Liew, J.Y. R., Shanmugam, N.E. Theory and Analysis of Structures. In: Chen W . F ., Liew J . Y . R., editors. The Civil Engineering Handbook, Second Edition, CRC Press (2003)
  • [4]. Hibeler, R. C., Structural Analysis. Prentice Hall (2005)
  • [5]. Kassimali, A., Structural Analysis. Thomson (2005)
  • [6]. Bhatt, P. and Marshall, W.T., Structures, A Revision of Structures by P. Bhatt and H.M. Nelson. Longman (1999)
  • [7]. Tezcan, S., Çubuk Sistemlerin Elektronik Hesap Makineleri ile Çözümü. ITU Library (1970)
  • [8]. Manolis Papadrakakis, Evangelos J. Sapountzakis, "Modified Stiffness Matrix Method Matrix Methods for Advanced Structural Analysis", 2018, Pages 281-298
  • [9]. E. Marotta, P. Salvini, "Analytical Stiffness Matrix for Curved Metal Wires", Procedia Structural Integrity, Volume 8, 2018, Pages 43-55
  • [10]. J.R. Banerjee, A. Ananthapuvirajah "An exact dynamic stiffness matrix for a beam incorporating Rayleigh–Love and Timoshenko theories", International Journal of Mechanical Sciences, Volume 150, January 2019, Pages 337-34
  • [11]. H. Wimmer, K. Nachbagauer "Exact transfer- and stiffness matrix for the composite beam-column with Refined Zigzag kinematics" Composite Structures, Volume 189, 1 April 2018, Pages 700-706
  • [12]. Chugh, A. K., 1977, Stiffness matrix for a beam element including transverse shear and axial force effects. Int. J. Numer. Meth. Eng. 11(11): 1681-1697 (1977)
  • [13]. Beer, F.P., Johnston, E. R. , Mechanics of Materials. McGraw Hill (1992)
  • [14]. ANSYS Release 12.0 Documentation.