Title of the Nitrogen Concentrations of Different Plant Parts of Wheat at Anthesis and Maturity Under Normal and High Temperature Conditions Manuscript

Farklı sıcaklık koşullarında buğdayın azot dinamiğini anlamak, gıda güvenliğini artırarak ve üretim maliyetlerini düşürerek buğday üretiminin sürdürülebilirliğini korumak için değerli bilgiler sağlayabilir. Normal ve yüksek sıcaklık koşulları altında çiçeklenme ve olgunlukta buğday bitkisinin farklı parçalarının azot konsantrasyonlarını gözlemlemek ve değerlendirmek için bir tarla denemesi yürütülmüştür. İki farklı zamanda tohum ekerek (normal buğday ekme zamanı ve sıcak koşulların sağlanabileceği oldukça geç bir zaman) iki farklı sıcaklık rejimi sağlanmıştır. Ayrıca, kuraklığın etkisini sıcaklıktan ayırmak için iki farklı sulama rejimi uygulanmıştır. Bitki aksamları bazında azot konsantrasyonu hem çiçeklenme hem de olgunlukta bayrak yaprakta en yüksek, alt sapta en düşük bulunmuştur. Sıcaklık rejimleri baz alındığında, olgunlukta üst sap hariç, hem çiçeklenme hem de olgunlukta, her bitki parçasında normal sıcaklık rejimine kıyasla yüksek sıcaklık rejiminde azot konsantrasyonları daha yüksek bulunmuştur. Sulama, normal sıcaklık rejimi altında, tüm bitki aksamlarının azot konsantrasyonlarını hem çiçeklenme hem de olgunlukta artırmıştır. Sulama, yüksek sıcaklık rejimi altında ise üst sap hariç tüm bitki aksamlarının hem çiçeklenme hem de olgunlukta azot konsantrasyonları üzerinde azaltıcı bir etkiye sahip olmuştur. Olgunlaşma döneminde kavuz-kılçık-ekseninin azot konsantrasyonu hem yüksek sıcaklık hem de sulama uygulamaları ile artmıştır. Çiçeklenme döneminde başaktaki azot konsantrasyonu yüksek sıcaklık rejimi altında daha yüksek olmuştur. Olgunlaşma dönemindeki tanelerin azot konsantrasyonları, yüksek sıcaklık ile artmış ve yüksek sıcaklıkta yağışa dayalı koşullarda maksimum olmuştur. Araştırma, bayrak yaprağı, alt yaprak ve alt sap azot konsantrasyonlarının uygulama esnasında aynı paterni izlediğini ve dane azot konsantrasyonu ile arasında bir korelasyon bulunduğunu göstermiştir

Normal ve Yüksek Sıcaklık Koşulları Altında Buğday Bitkisinin Farklı Aksamlarının Çiçeklenme ve Olgunluktaki Azot Konsantrasyonları

Understanding nitrogen dynamics of wheat under different temperature conditions may provide valuable informations to maintain the sustainability of wheat production, improve food security and reduce production costs. A field trial was established to observe and evaluate nitrogen concentrations of different wheat plant parts at anthesis and maturity under normal and high temperature conditions. Two different temperature regimes were provided by planting seeds at two different calender times (normal wheat sowing time and a quite late time to receive warmer conditions). Also two different irrigation regimes were applied to distinguish the impact of drought from temperature. On the plant parts basis, nitrogen concentration was maximum at flag leaf and minimum at lower stem both at anthesis and maturity. On the basis of temperature regimes, nitrogen concentrations were higher at high temperature regime compared to normal temperature regime for each plant parts both for anthesis and maturity except upper stem at maturity. Irrigation was increased nitrogen concentrations of each plant parts both at anthesis and and maturity under normal temperature regime. But oppositely, irrigation has a reducing effect on nitrogen concentrations of each plant parts both at anthesis and and maturity under high temperature regime except again at upper stem anthesis maturity. Nitrogen concentration of husks-awn-axis at maturity was increased both by high temperature and irrigation applications. Nitrogen concentration of spikes at anthesis was higher under high temperature. Nitrogen concentrations of grains at maturity was increased by high temperature and was maximum at high temperature rainfed condition. Our investigations showed that nitrogen concentrations of flag leaf, lower leaves and lower stem followed same pattern between applications and there exists a correlation between grain nitrogen concentration

___

  • [1] Semenov, M. A., Impacts of climate change on wheat in England and Wales, Journal of the Royal Society Interface, 2008.
  • [2] Tubiello, F. N., Rosenzweig, C., Goldberg, R. A., Jagtap, S. and Jones, J. W., US national assessment technical report effects of climate change on US crop production part I: wheat, potato, corn, and citrus. Vol. 2011, University of Florida: NASA-GISS and Columbia University, 2000.
  • [3] Reynolds, M. P., Oritiz-Monasterio, J. I. and McNab, A., Application of physiology in wheat breeding, Mexico, D. F: CIMMYT. 240 p., 2001.
  • [4] Noohi, K., Fatahi, E. and Kamali, G. H. A., Heat stress effects analysis on wheat crop in southern provinces, Geophysical Res Abstracts. 11, 4441, 2009.
  • [5] Singh, N. B., Singh, Y. P. and Singh, V. P. N., Variation in physiological traits in promising wheat varieties under late sown condition, Indian Journal of Plant Physiology, 10(2), 171-175, 2005.
  • [6] Vitousek, P. M., Hattenschwiler, S., Olander, L. and Allison, S., Nitrogen and nature, Ambio, 31, 97-101, 2002.
  • [7] Jamieson, P. D. and Semenov, M. A., Modelling nitrogen uptake and redistribution in wheat, Field Crops Research, 68(1), 21-29, 2000.
  • [8] Garabet, S., Wood, M. and Ryan, J., Nitrogen and water effects on wheat yield in a Mediterranean - type climate: I. Growth, water-use and nitrogen accumulation, Field Crops Research, 57(3), 309-318, 1998.
  • [9] Moffatt, J. M., Sears, R. G. and Paulsen, G. M., Wheat high temperature tolerance during reproductive growth. I. Evaluation by chlorophyll fluorescence, Journal of Crop Science, 30, 881-885, 1990.
  • [10] Coles, G. D., Hartunian-Sowa, S. M., Jamieson, P. D., Hay, A. J., Atwell, W. A. and Fulcher, R. G., Environmentally-induced variation in starch and non-starch polysaccharide content in wheat, Journal of Cereal Science, 26(1), 47-54, 1997.
  • [11] Erekul, O. and Kohn, W., Effect of weather and soil conditions on yield components and bread making quality of winter wheat (Triticum aestivum L.) and winter triticale (Triticosecale Wittm.) varieties in North-East Germany, Journal of Agronomy and Crop Science, 192(6), 452-464, 2006.
  • [12] Stone, P. J. and Nicolas, M. E., The effect of duration of heat stress during grain filling on two wheat varieties differing in heat tolerance: grain growth and fractional protein accumulation, Functional Plant Biology, 25(1), 13-20, 1998.
  • [13] Borghi, B., Corbellini, M., Minoia, C., Palumbo, M., Di Fonzo, N. and Perenzin, M., Effects of Mediterranean climate on bread-making quality, Eur. J. Agron, 6, 145-154, 1997.
  • [14] Gooding, M. J., Ellis, R. H., Shewry, P. R. and Schofield, J. D., Effects of restricted water availability and increased temperature on the grain filling, drying and quality of winter wheat, J. Cereal Sci., 37, 295-309, 2003.
  • [15] Castro, M., Peterson C. J., Rizza, M. D., Dellavalle, P. D., Vazquez, D. and Ross, A., Influence of heat stress on wheat grain characteristics and protein molecular weight distribution, In: Wheat Production in Stressed Environment, 365-371. Springer Netherlands, 2007.
  • [16] Knowles, T. C., Dooerge, T. A. and Ottman, M. J., Improved nitrogen management in irrigated durum wheat using stem nitrate analysis: II. Interception of nitrate-N contents, Agron. J., 83, 353-6, 1991.
  • [17] Kelley, K. W., Rate and time of N application for wheat following different crops, J. Prod. Agric., 8, 339-45, 1995.
  • [18] Wuest, S. B. and Cassman, K. G., Fertilizer-N use efficiency of irrigated wheat: I. Uptake and efficiency of pre-plant versus late season application, Agron. J., 84, 682-8, 1992.
  • [19] Robert, N., Hennequet, C. and Bérard, P., Dry matter and nitrogen accumulation in wheat kernel: Genetic variation in rate and duration of grain filling, J. Genet. Breed., 55, 297-305, 2001.
  • [20] Fageria, N. K., The Use of Nutrients in Crop Plants, Boca Raton, Florida, USA: CRC Press, Taylor & Francis Group, LLC, 2009.
  • [21] Ozbek H., Dinc, U., Kapur, S., Çukurova Üniversitesi Yerleşim Sahası Topraklarının Detaylı Temel Toprak Etüt ve Haritası, Ç. Ü. Ziraat Fakültesi Yayınları: 73, Bilimsel Araştırma ve İncelemeler, 8, 149, 1974.
  • [22] Bell, M. A. and Fischer, R. A., Guide to plant and crop sampling, measurements and observations for agronomic and physiological research in small grain cereals, Wheat Special Report, No:32 Mexico, D. F. CIMMYT pp. 66, 1994.
  • [23] Zadoks, J. C., Chang, T. T. and Konzak, C. F., A decimal code for the growth stage of cereals, Weed Research, 14, 415-421, 1974.