NHC Tipi Moleküllerin ve NHC-Ag Komplekslerin VEGFR-2 ve DNA ile Etkileşimlerinin Analizi: Moleküler Doking Çalışması
Moleküler doking, ilaç araştırmalarında önemli bir araçtır. Bu hesaplamalar sayesinde moleküllerin hedef moleküllerle olan etkileşimlerinin türü ve büyüklüğü değerlendirilir. Güncel bilimsel gelişmelerle elde edilen sonuçlar kullanılarak, bilinen deneysel yöntemlere göre daha detaylı analizleri kolay ve ekonomik bir şekilde gerçekleştirmek ve biyoaktivite tipine bağlı olarak farklı hedef moleküller ile etkileşimleri incelemek de mümkündür. Kanser araştırmaları vasküler endotelyal büyüme faktörünün, kanser hücrelerinin büyümesi ve çoğalmasında etkili olduğunu göstermektedir. Bu faktörün salımını düzenleyen reseptörün inhibisyonu, bir antikanser ajanı tasarlamak için etkili bir yöntem olabilir. Bu reseptörlerden biri VEGFR-2'dir. Bu reseptör, kanser araştırmalarında bir hedef molekül olarak kullanılabilir. Ayrıca moleküllerin DNA ile etkileşimi ileride yapılacak çalışmalara ışık tutması açısından önemlidir. Bu çalışmada, VEGFR2 ve DNA ile 1-allil-3-benzilbenzimidazolyum, 1-allil-3-(naftilmetil)benzimidazolyum, 1-allil-3 (antrasen-9-il-metil)benzimidazolyum, kloro[1-allil-3-benzilbenzimidazolyum-2- iliden]gümüş(I), kloro[1-allil-3-(naftilmetil)benzimidazolyum-2-iliden]gümüş (I), kloro[1-allil3-(antrasen-9-il-metil)benzimidazolium-2-iliden]gümüş(I) bileşiklerinin etkileşimi moleküler doking yöntemleriyle analiz edildi.
Analysis of Interactions of NHC Type Molecules and NHC-Ag Complexes with VEGFR-2 and DNA: A Molecular Docking Study
Molecular docking is an important tool in drug research. Thanks to these calculations, thetype and magnitude of interactions of the molecules with target molecules are evaluated. It is alsopossible to perform more detailed analyzes than known experimental methods in an easy andeconomical way by using the results obtained with current scientific developments and examineinteractions with different target molecules depending on bioactivity type. Cancer researchesshow that vascular endothelial growth factor is effective in the growth and proliferation of cancercells. Inhibition of the receptor that regulates the release of this factor may be an efficient methodfor designing an anticancer agent. One of these receptors is VEGFR-2. This receptor can be usedas a target molecule in cancer research. In addition, the interaction of molecules with DNA isimportant in terms of getting insight for future studies. In this study, the interaction of 1-allyl-3-benzylbenzimidazolium, 1-allyl-3-(naphthylmethyl)benzimidazolium, 1-allyl-3-(anthracen-9-ylmethyl)benzimidazolium,chloro[1-allyl-3-benzylbenzimidazolium-2-ylidene]silver(I), chloro[1-allyl-3-(naphthylmethyl)benzimidazolium-2-ylidene]silver(I), chloro[1-allyl-3-(anthracen-9-ylmethyl)benzimidazolium-2-ylidene]silver(I) with VEGFR-2 and DNA were analyzed bymolecular docking methods.
___
- [1] Auerbach, W., Auerbach, R., Angiogenesis inhibition: a review, Pharmacology & Therapeutics, 63(3), 265-311, 1994.
- [2] Otrock, Z.K., Mahfouz, R.A., Makarem, J.A., Shamseddine, A.I., Understanding the biology of angiogenesis: review of the most important molecular mechanisms, Blood Cells, Molecules, and Diseases, 39(2), 212-220, 2007.
- [3] Weidner, N., Tumor angiogenesis: review of current applications in tumor prognostication, In Seminars in Diagnostic Pathology, 10(4), 302-313, 1993.
- [4] Shahi, P.K., Pineda, I.F., Tumoral angiogenesis: review of the literature, Cancer Investigation, 26(1), 104-108, 2008.
- [5] Ferrara, N., Vascular endothelial growth factor and the regulation of angiogenesis, Recent Progress in Hormone Research, 55, 15-35, 2000.
- [6] Chung, A.S., Ferrara, N., Developmental and pathological angiogenesis, Annual Review of Cell and Developmental Biology, 27, 563-584, 2011.
- [7] Matulonis, U.A., Berlin, S., Ivy, P., Tyburski, K., Krasner, C., Zarwan, C., Lee, H., Cediranib, An oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer, Journal of clinical oncology, 27(33), 5601-5606, 2009.
- [8] Parr, C., Watkins, G., Boulton, M., Cai, J., Jiang, W.G., Placenta growth factor is overexpressed and has prognostic value in human breast cancer, European Journal of Cancer, 41(18), 2819-2827, 2005.
- [9] Strumberg, D., Preclinical and clinical development of the oral multikinase inhibitor sorafenib in cancer treatment, Drugs Today (Barc), 41(12), 773-784, 2005.
- [10] Zhang, P.C., Liu, X., Li, M.M., Ma, Y.Y., Sun, H.T., Tian, X.Y., Chen, H.Y., AT-533, a novel Hsp90 inhibitor, inhibits breast cancer growth and HIF-1α/VEGF/VEGFR-2-mediated angiogenesis in vitro and in vivo, Biochemical Pharmacology, 172, 113771, 2020.
- [11] Sana, S., Reddy, V.G., Bhandari, S., Reddy, T.S., Tokala, R., Sakla, A.P., Shankaraiah, N., Exploration of carbamide derived pyrimidine-thioindole conjugates as potential VEGFR-2 inhibitors with anti-angiogenesis effect, European Journal of Medicinal Chemistry, 112457, 2020.
- [12] Abdel-Mohsen, H.T., Abdullaziz, M.A., Kerdawy, A.M.E., Ragab, F.A., Flanagan, K.J., Mahmoud, A.E., Senge, M.O., Targeting Receptor Tyrosine Kinase VEGFR-2 in Hepatocellular Cancer: Rational Design, Synthesis and Biological Evaluation of 1, 2- Disubstituted Benzimidazoles, Molecules, 25(4), 770, 1-37, 2020.
- [13] El- Adl, K., El- Helby, A.G.A., Sakr, H., Ayyad, R.R., Mahdy, H.A., Nasser, M., ElHddad, S.S., Design, synthesis, molecular docking, anticancer evaluations, and in silico pharmacokinetic studies of novel 5- [(4- chloro/2, 4- dichloro) benzylidene] thiazolidine- 2, 4- dione derivatives as VEGFR- 2 inhibitors, Archiv der Pharmazie, e2000279, 2020.
- [14] Abou-Seri, S.M., Eldahna, W.M. Ali, M.M., and Ella, A.E., 1-Piperazinylphthalazines as potential VEGFR-2 inhibitors and anticancer agents: Synthesis and in vitro biological evaluation, European Journal of Medicinal Chemistry, 107, 165-179, 2016.
- [15] Michalak, E.M., Burr, M.L., Bannister, A.J., Dawson, M.A., The roles of DNA, RNA and histone methylation in ageing and cancer, Nature Reviews Molecular Cell Biology, 1, 2019.
- [16] Zhang, J., Yang, C., Wu, C., Cui, W., and Wang, L., DNA Methyltransferases in Cancer: Biology, Paradox, Aberrations, and Targeted Therapy, Cancers, 12(8), 2123, 2020.
- [17] Alhmoud, J.F., Woolley, J.F., Moustafa, A.E.A., Malki, M.I., DNA Damage/Repair Management in Cancers, Cancers, 12(4), 1050, 2020.
- [18] Goessl, C., Müller, M., Straub, B., and Miller, K., DNA alterations in body fluids as molecular tumor markers for urological malignancies, European Urology, 41(6), 668-676, 2002.
- [19] Öfele, K., 1, 3-Dimethyl-4-imidazolinyliden-(2)-pentacarbonylchrom ein neuer Übergangsmetall-carben-komplex, Journal of Organometallic Chemistry, 12(3), 42-43, 1968.
- [20] Wanzlick, H.W., Schönherr, H.J., Direct synthesis of a mercury salt- carbene complex, Angewandte Chemie International Edition in English, 7(2), 141-142, 1968.
- [21] Diez-Gonzalez, S., Marion, N., Nolan, S.P., N-heterocyclic carbenes in late transition metal catalysis, Chemical Reviews, 109(8), 3612-3676, 2009.
- [22] Feller, D., Borden, W.T., Davidson, E.R., Dependence of the singlet-triplet splitting in heterosubstituted carbenes on the heteroatom electronegativity and conformation, Chemical Physics Letters, 71(1), 22-26, 1980.
- [23] Sarı, Y., Gürses, C., Celepci, D.B., Keleştemur, Ü., Aktaş, A., Yüksel, Ş., Gök, Y., 4- Vinylbenzyl and 2-morpholinoethyl substituted ruthenium (II) complexes: Design, synthesis, and biological evaluation, Journal of Molecular Structure, 1202, 127355, 2020.
- [24] Simpson, P.V., Schmidt, C., Ott, I., Bruhn, H., Schatzschneider, U., Synthesis, Cellular Uptake and Biological Activity Against Pathogenic Microorganisms and Cancer Cells of Rhodium and Iridium N- Heterocyclic Carbene Complexes Bearing Charged Substituents, European Journal of Inorganic Chemistry, 2013(32), 5547-5554, 2013.
- [25] Şahin, N., Şahin-Bölükbaşı, S., Tahir, M.N., Arıcı, C., Cevik, E., Gürbüz, N., Cummings, B.S., Synthesis, characterization and anticancer activity of allyl substituted NHeterocyclic carbene silver(I) complexes, Journal of Molecular Structure, 1179, 92-99, 2019.
- [26] Rehm, T., Rothemund, M., Muenzner, J. K., Noor, A., Kempe, R., Schobert, R., Novel cis-[(NHC)1 (NHC)2 (L)Cl]platinum(II) complexes–synthesis, structures, and anticancer activities, Dalton Transactions, 45(39), 15390-15398, 2016.
- [27] Hackenberg, F., Müller-Bunz, H., Smith, R., Streciwilk, W., Zhu, X., Tacke, M., Novel ruthenium (II) and gold (I) NHC complexes: Synthesis, characterization, and evaluation of their anticancer properties, Organometallics, 32(19), 5551-5560, 2013.
- [28] Düşünceli, S.D., Ayaz, D., Üstün, E., Günal, S., Özdemir, N., Dinçer, M., Özdemir, İ., Synthesis, antimicrobial properties, and theoretical analysis of benzimidazole-2-ylidene silver(I) complexes, Journal of Coordination Chemistry, 73(13), 1967-1986, 2020.
- [29] Hosseini, F.S., & Amanlou, M., Anti-HCV and anti-malaria agent, potential candidates to repurpose for coronavirus infection: Virtual screening, molecular docking, and molecular dynamics simulation study, Life Sciences, 258, 118205, 2020.
- [30] Akkoç, S., Yavuz, S.Ç., Türkmenoğlu, B., İlhan, İ.Ö., Akkurt, M., Single Crystal, DFT and Docking Studies of a Benzimidazolium Salt, Crystallography Reports, 65, 1173-1178, 2020.
- [31] Velihina, Y., Scattolin, T., Bondar, D., Pil'o, S., Obernikhina, N., Kachkovskyi, O., Semenyuta, I., Caligiuri, I., Rizzolio, F., Brovarets, V., Karpichev, Y., Nolan, S.P., Synthesis, in silico and in vitro Evaluation of Novel Oxazolopyrimidines as Promising Anticancer Agents, Helvetica Chimica Acta, 103(12), ee2000169, 2020.
- [32] Yavuz, S.Ç., Akkoç, S., Türkmenoğlu, B., Sarıpınar, E., Synthesis of novel heterocyclic compounds containing pyrimidine nucleus using the Biginelli reaction: Antiproliferative activity and docking studies, Journal of Heterocyclic Chemistry, 57(6), 2615- 2627, 2020.
- [33] Radwan, M.A., Alshubramy, M.A., Abdel-Motaal, M., Hemdan, B.A., El-Kady, D. S., Synthesis, molecular docking and antimicrobial activity of new fused pyrimidine and pyridine derivatives, Bioorganic Chemistry, 96, 103516, 2020.
- [34] Çevik-Yıldız, E., Şahin, N., Şahin-Bölükbaşı, S., Synthesis, characterization, and investigation of antiproliferative activity of novel Ag(I)-N-Heterocyclic Carbene (NHC) compounds, Journal of Molecular Structure, 1199, 126987, 2020.
- [35] Neese, F., A critical evaluation of DFT, including time-dependent DFT, applied to bioinorganic chemistry, JBIC Journal of Biological Inorganic Chemistry, 11(6), 702-711, 2006.
- [36] Neese, F., Prediction of molecular properties and molecular spectroscopy with density functional theory: From fundamental theory to exchange-coupling, Coordination Chemistry Reviews, 253(5-6), 526-563, 2009.
- [37] https://www.rcsb.org/ Protein Data Bank (PDB)
- [38] Islam, M.A., & Pillay, T.S., Identification of promising anti-DNA gyrase antibacterial compounds using de novo design, molecular docking and molecular dynamics studies, Journal of Biomolecular Structure and Dynamics, 38(6), 1798-1809, 2020.
- [39] Sivakumar, K.C., Haixiao, J., Naman, C.B., & Sajeevan, T.P., Prospects of multitarget drug designing strategies by linking molecular docking and molecular dynamics to explore the protein–ligand recognition process, Drug Development Research, 81(6), 685-699, 2020.
- [40] Vidhya, V., Austine, A., & Arivazhagan, M., Experimental approach, theoretical investigation and molecular docking of 2-chloro-5-fluoro phenol antibacterial compound, Heliyon, 6(11), e05464, 2020.
- [41] Qiu, Y., Li, X., He, X., Pu, J., Zhang, J., Lu, S., Computational methods-guided design of modulators targeting protein-protein interactions (PPIs), European Journal of Medicinal Chemistry, 207, 112764, 2020.
- [42] Dana, H., Chalbatani, G.M., Gharagouzloo, E., Miri, S.R., Memari, F., Rasoolzadeh, R., Marmari, V., In silico Analysis, Molecular Docking, Molecular Dynamic, Cloning, Expression and Purification of Chimeric Protein in Colorectal Cancer Treatment, Drug Design, Development and Therapy, 14, 309, 2020.
- [43] Acharya, R., Chacko, S., Bose, P., Lapenna, A., Pattanayak, S.P., Structure based multitargeted molecular docking analysis of selected furanocoumarins against breast cancer, Scientific Reports, 9(1), 1-13, 2019.
- [44] Hashim, D., Carioli, G., Malvezzi, M., Bertuccio, P., Waxman, S., Negri, E., Boffetta, P., Cancer mortality in the oldest old: a global overview, Aging (Albany NY), 12(17), 16744, 2020.
- [45] Meng, X., Ye, L., Yang, Z., Xiang, R., Wang, J., Adsorption behavior of melphalan anti-ovarian cancer drug onto boron nitride nanostructures, Studying MTT assay: in vitro cellular toxicity and viability, Chemical Papers, 1-6, 2020.
- [46] Vetrivel, P., Kim, S.M., Ha, S.E., Kim, H.H., Bhosale, P.B., Senthil, K., Kim, G.S., Compound Prunetin Induces Cell Death in Gastric Cancer Cell with Potent Anti-Proliferative Properties: In Vitro Assay, Molecular Docking, Dynamics, and ADMET Studies, Biomolecules, 10(7), 1086, 2020.
- [47] Ahmed, E.Y., Latif, N.A.A., El-Mansy, M.F., Elserwy, W.S., Abdelhafez, O.M., VEGFR-2 inhibiting effect and molecular modeling of newly synthesized coumarin derivatives as anti-breast cancer agents, Bioorganic & Medicinal Chemistry, 28(5), 115328, 2020.
- [48] Cheng, K., Liu, C.F., Rao, G.W., Anti-angiogenic Agents: A Review on Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) Inhibitors, Current Medicinal Chemistry, 20(1), 2020. Doi:10.2174/0929867327666200514082425
- [49] Jackson, S.P., The DNA-damage response: new molecular insights and new approaches to cancer therapy, Biochemical Society Transactions, 37(3), 483-494, 2009.
- [50] Gupta, R.K., Sharma, G., Pandey, R., Kumar, A., Koch, B., Li, P.Z., Pandey, D.S., DNA/protein binding, molecular docking, and in vitro anticancer activity of some thioetherdipyrrinato complexes, Inorganic Chemistry, 52(24), 13984-13996, 2013.