Fiberle güçlendirilmiş indirekt kompozit kronların kırılma dirençlerinin IPS Empress tam seramik kronlar ile karşılaştırılması

AMAÇ: Bu çalışmada fiberle kuvvetlendirilmiş indirekt kompozit sistemlerinin (SR Adoro/Vectris ve BelleGlass NG/Construct) kırılma direnci tam seramik sistemi (IPS Empress 2) ile karşılaştırılması amaçlanmıştır. Ayrıca bu materyallerin kırılma direnci üzerine farklı basamak preparasyonunun (1 mm oluk biçimli basamak ve0.8 mm dik açılı basamak) etkisinin olup olmadığı da incelenmiştir.GEREÇ VE YÖNTEM: Her materyal grubundan 10 adet oluk biçimli basamak, 10 adet dik açılı basamak olmak üzere toplam 20’şer adet kron örnek hazırlanarak toplam 60 örnek mekanik direnç testine tabi tutulmuştur. Kırılma direnci testleri için Lloyd LRX cihazı ve Nexygen bilgisayar yazılımı kullanılmıştır.BULGULAR: İstatistiksel değerlendirmeler neticesinde fiber destekli indirekt kompozit materyallerinin kırılma direnci açısından tam seramik sistemi IPS Empress 2’den daha başarılı olduğu bulunmuştur. En yüksek kırılma direnci değerlerini BelleGlass NG/Construct fiberle kuvvetlendirilmiş indirekt kompozit sistemi gösterirken, en düşük kırılma direncini IPS Empress 2 tam seramik sistemi göstermiştir (IPS Empress 2: 845.95±119.7 N, SR Adoro/Vectris: 942.67±136.6N, BelleGlass NG/Construct: 1187.93±383.5 N).SONUÇ: Fiberle güçlendirilmiş indirekt kompozitlerin kırılma direncinin tam seramik sistemin kırılma direncinden daha yüksek olduğu ve dik açılı basamak preparasyonunun, oluk biçimli basamak preparasyonuna göre daha dirençli bir yapı oluşturduğu saptanmıştır.

Comparison of fracture strengths of fiber-reinforced composite crowns and IPS Empress all ceramic crowns

OBJECTIVE: The aim of this study was to compare fracture strength of fiber reinforced indirect composite systems (SR Adoro/Vectris and BelleGlass NG/Construct) with a full ceramic system (IPS Empress 2). Moreover, the effect of 2 different margin preparations (1 mm chamfer and0.8 mm shoulder preparation) on fracture strength was evaluated.MATERIALS AND METHOD: Preparing 20 crown samples from each material group, ten from chamfer and ten from shoulder, a total of 60 samples were subjected to fracture strength test. Lloyd LRX universal testing device and Nexygen computer software were used to evaluate fracture resistance of the samples.RESULTS: The results were measured in Newton and the data were statically evaluated using Kruskal Wallis test. As a result of statical evaluations, fracture strength of fibrereinforced indirect composite materials was found to be greater than that of full ceramic system IPS Empress. While the fiber-reinforced composite system BelleGlass NG/Construct had the highest fracture strength values, IPS Empress full ceramic system had the lowest fracture resistance values. (IPS Empress 2: 845.95±119.7 N, SR Adoro/Vectris: 942.67±136.6 N, BelleGlass NG/Construct: 1187.93±383.5 N). Besides, it was found that the shoulder preparation ensured a more resistant crown structure than the chamfer preparation did.CONCLUSION: It was concluded that the fiber-reinforced indirect composites’ fracture strength was greater than that of the full ceramic system, and that the shoulder preparation formed a more resistant structure than the chamfer preparation.

___

  • Meiers JC, Freilich MA. Conservative anterior tooth replacement using fiber-reinforced composite. Oper Dent 2000;25:239-43.
  • Freilich MA, Meieres JC, Duncan JP, Eckrote KA, Goldberg AJ. Clinical evalution of fiber- reinforced fixed bridges. J Am Dent Assos 2002;133:1524-34.
  • Rammelsberg P, Eickemeyer G, Erdelt K, Pospiech P. Fracture resistance of posterior metal-free polymer crowns. J Prosthet Dent 2000;84:303-8.
  • Dyer SR, Lassila LVJ, Jokinen M, Valittu PK. Effect of fiber position and orientation on fracture load of fiber-reinforced composite. Dent Mater 2004;20:947-55.
  • Nielsen LE. Mechanical properties of polymer and composites. 2nd edn.. New York: Marcel Dekker; 1974.
  • Freilich M, Meiers J. Rationale for the clinical use of fiber-reinforced Composites: fiber reinforced composites, Illinois: Quintessence Publishing Co; 2000.
  • Ku CW, Park SW, Yang HS. Comparison of the fracture strengths of metal-ceramic crowns and three ceromer crowns. J Prosthet Dent 2002;88:170-5.
  • Kelly JR. Clinically revelant approach to failure testing of all-ceramic restorations. J Prosthet Dent 1999;81:652-61.
  • Malament KA, Socransky SS. Survival of Dicor glass-ceramic dental restorations over 16 years. Part III: effect of luting agent and tooth or tooth-substitue core structure. J Prosthet Dent 2001;86:511-9.
  • Behr M, Rosentritt M, Ledwinsky E, Handel G. Fracture resistance and marginal adaptation of conventionally cemented fiber-reinforced composite three-unit FPDs. Int J Prosthodont 2002;15:467-72.
  • Doyle MG, Munoz CA, Goodache CJ, Friedlander LD, Moore BK. The effect of tooth preparation design on the breaking strength of the Dicor crowns: II. Int J Prosthodont 1990;3:241-8.
  • Friedlander LD, Munoz CA, Goodacre CJ, Doyle MG, Moore BK. The effect of tooth preparation design on the breaking strength of Dicor crowns: part 1. Int J Prosthodont 1990;3:159-68.
  • Cho LR, Choi JM, Yi YJ, Park CJ. Effect of finish line variants on marginal accuracy and fracture strength of ceramic optimized polymer/fiberreinforced composite crowns. J Prosthet Dent 2004;91:554-60.
  • Chen HY, Hickel R, Setcos JC, Kunzelmann KH. Effects of surface finish and fatique testing on the fracture strength of CAD-CAM and pressed-ceramic crowns. J Prosthet Dent 1999;82:468-75.
  • Probster I. Compressive strength of two modern all-ceramic crowns. Int J Prosthodont 1992;5:409-14.
  • Behr M, Rosentritt M, Latzel D, Kreisler T. Comparison of three types of fiber-reinforced composite molar crowns on their fracture resistance resistance and marginal adaptation. J Dent 2001;29:187-96.
  • De Boever JA, McCall WD Jr, Holden S, Ash MM Jr. Functional occlusal forces: an investigation by telemetry. J Prosthet Dent 1978;40:326-33.
  • Loose M, Rosentritt M, Leibrock A, Behr M, Handel G. In vitro study of fracture strength and marginal adaptation of fibre- reinforced- composite versus all ceramic fixed partial dentures. Eur J Prosthodont Rest Dent 1998;6:55-62.
  • Scholz MS, Schulz K, Borchers L. In vitro fracture resistance of four unit fiber-reinforced composite fixed partial dentures. Dent Mater 2006;22:374-81
  • Behr M, Rosentritt M, Lang R, Handel G. Flexural properties of fiber reinforced composite using a vacuum/pressure or a manuel adaptation manufacturing process. J Dent 2000;28:509-14.
  • Ramos V, Runyan DA, Christensen L. The effect of plasma-treated polyethylene fiber on the fracture strength of polymethyl methacylate. J Prosthet Dent 1996;76:94-6.
  • Quinn JB, Quinn GD. Material properties and fractography of an indirect dental resin composite. Dent Mater 2010;26:589-99.
  • Germain HC, Swartz ML, Phillips RW, Moore BK, Roberts TA. Properties of microfilled composite resins as influenced by filler content. J Dent Res 1984;63:254.
  • Waknine S, Sumithra N, Vaidyanathan TK, Vaidyanathan J. Properties of visible light cured composites and filler concentration. J Dent Res 1984;63:265.
  • Ellakwa A, Shortall A, Shehata M, Marquis P. Influence of veneering composite composition on the efficacy of fiber-reinforced restorations (FRR). Oper Dent 2001;26:467-75.
  • Waltimo A, Nystrom M, Kononen M. Bite force on single as opposed to all maxillary front teeth. Scand J Dent Res 1994;102:372-5.
  • Korber KH, Ludwig K. Experimental study of the mechanical strength of bridge frameworks for metalloceramics. ZWR 1982;91:53-61.