Genome Editing Technologies: From Bench Side to Bedside

The development of genome editing technologies has given the chance to researchers to manipulate any genomic sequences precisely. This ability is very useful for creating animal models to study human diseases in vivo; for easy creation of isogenic cell lines to study in vitro and most importantly for overcoming many disadvantages that the researchers faced during the human gene therapy trials. Here we review the basic mechanisms of genome editing technology and the four genome-editing platforms. We also discuss the applications of these novel technologies in preclinical and clinical studies in four groups according to the mechanism used, and lastly, summarize the problems in these technologies.

___

Maeder ML, Gersbach CA. Genome-editing Technologies for Gene and Cell Therapy. Mol Ther. 2016; 24(3): 430-46.

Rouet P, Smih F, Jasin M. Expression of a site-specific endonu- clease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A. 1994; 91(13): 6064-8.

Belfort M, Roberts RJ. Homing endonucleases: keeping the house in order. Nucleic Acids Res. 1997; 25(17): 3379-88.

Bibikova M, Golic M, Golic KG, et al. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. 2002; 161(3): 1169-75.

Doyon Y, Vo TD, Mendel MC, et al. Enhancing zinc-finger-nu- clease activity with improved obligate heterodimeric archi- tectures. Nat Methods. 2011; 8(1): 74-9.

Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009; 326(5959): 1509-12.

Boissel S, Jarjour J, Astrakhan A, et al. megaTALs: a rare-cleav- ing nuclease architecture for therapeutic genome engineer- ing. Nucleic Acids Res. 2014; 42(4): 2591-601.

Jore MM, Lundgren M, van Duijn E, et al. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol. 2011; 18(5): 529-36. [9] Jinek M, Chylinski K, Fonfara I, et al. Science. A programma- ble dual-RNA-guided DNA endonuclease in adaptive bacteri- al immunity. 2012; 337(6096): 816-21.

Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a sin- gle RNA-guided endonuclease of a class 2 CRISPR-Cas sys- tem. Cell. 2015 Oct 22;163(3):759-71.

Moreno-Mateos MA, Fernandez JP, Rouet R, et al. CRISPR- Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing. BioRxiv 2017 Jun: doi: http://dx.doi.org/10.1101/156125.

Ran FA, Cong L, Yan WX, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015; 520(7546): 186-91.

Kleinstiver BP, Prew MS, Tsai SQ, et al. Engineered CRISPR- Cas9 nucleases with altered PAM specificities. Nature. 2015; 523(7561): 481-5.

Takata M, Sasaki MS, Sonoda E, et al. Homologous recombi- nation and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 1998; 17(18): 5497-508.

Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas- based methods for genome engineering. Trends Biotechnol. 2013; 31(7): 397-405.

Canver MC, Bauer DE, Dass A, et al. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J Biol Chem. 2014; 289(31): 21312-24.

Brunet E, Simsek D, Tomishima M, et al. Chromosomal trans- locations induced at specified loci in human stem cells. Proc Natl Acad Sci U S A. 2009; 106(26):10620-5.

Hoban MD, Bauer DE. A genome editing primer for the hema- tologist. Blood. 2016; 127(21): 2525-35.

Mao Z, Bozzella M, Seluanov A, et al. Comparison of nonho- mologous end joining and homologous recombination in human cells. DNA Repair (Amst). 2008; 7(10): 1765-71.

Chu VT, Weber T, Wefers B, et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol. 2015; 33(5): 543-8.

Monteys AM, Ebanks SA, Keiser MS, et al. CRISPR/Cas9 Editing of the Mutant Huntingtin Allele In Vitro and In Vivo. Mol Ther. 2017 Jan 4;25(1):12-23.

Su S, Zou Z, Chen F, et al. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. Oncoimmunology. 2016 Nov 22;6(1): e1249558.

Reik A, Holmes MC, Zhou Y, et al. (2007). Targeted killing of glioblastoma multiforme in vivo by IL-13 zetakine redirected CTLs made glucocorticoid resistant with zinc finger nucleas- es. Blood. 2007; 110: 2597-99.

Perez EE, Wang J, Miller JC, et al. Establishment of HIV-1 resis- tance in CD4+ T cells by genome editing using zinc-finger nu- cleases. Nat Biotechnol. 2008; 26: 808–816.

Holt N, Wang J, Kim K, et al. Human hematopoietic stem/pro- genitor cells modified by zinc- finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol. 2010; 28: 839–847.

NIH, US National Library of Medicine. https://clinicaltrials.gov (accessed February 2018)

Xiao A, Wang Z, Hu Y, et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res. 2013; 41(14): e141.

Xiao A, Zhang B. Generation of Targeted Genomic Deletions Through CRISPR/Cas System in Zebrafish. Methods Mol Biol. 2016; 1451: 65-79.

Ousterout DG, Kabadi AM, Thakore PI, et al. Multiplex CRISPR/ Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun. 2015; 6: 6244.

Bauer DE, Kamran SC, Lessard S, et al. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science. 2013; 342(6155): 253-7. [31] Canver MC, Smith EC, Sher F, et al. BCL11A enhancer dis- section by Cas9-mediated in situ saturating mutagenesis. Nature. 2015; 527(7577): 192-7.

Hu W, Kaminski R, Yang F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infec- tion. Proc Natl Acad Sci U S A. 2014; 111(31): 11461-6.

Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016; 533(7603): 420-4.

Zhang Y, Qin W, Lu X, et al. Programmable base editing of ze- brafish genome using a modified CRISPR-Cas9 system. Nat Commun. 2017; 8(1): 118.

Hoban MD, Cost GJ, Mendel MC, et al. Correction of the sickle cell disease mutation in human hematopoietic stem/progen- itor cells. Blood. 2015; 125(17): 2597-604.

Yin H, Xue W, Chen S, Bogorad RL, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and pheno- type. Nat Biotechnol. 2014; 32(6): 551-3.

Genovese P, Schiroli G, Escobar G, et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature. 2014; 510(7504): 235-240.

Voit RA, Hendel A, Pruett-Miller SM, et al. Nuclease-mediated gene editing by homologous recombination of the human globin locus. Nucleic Acids Res. 2014; 42(2): 1365-78.

Zou J, Sweeney CL, Chou BK, et al. Oxidase-deficient neutro- phils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease-mediated safe harbor targeting. Blood. 2011; 117(21): 5561-72.

Sharma R, Anguela XM, Doyon Y, et al. In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood. 2015; 126(15): 1777-84.

Prakash V, Moore M, Yáñez-Muñoz RJ. Current Progress in Therapeutic Gene Editing for Monogenic Diseases. Mol Ther. 2016; 24(3): 465-74.

Doudna JA, Sontheimer EJ. Methods in Enzymology. The use of CRISPR/Cas9, ZFNs, and TALENs in generating site-specif- ic genome alterations. Preface. Methods Enzymol. 2014; 546: xix-xx.

Zu Y, Tong X, Wang Z, et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods. 2013; 10(4): 329-31.

Yoshimi K, Kunihiro Y, Kaneko T, et al. ssODN-mediated knock- in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun. 2016; 7: 10431.

Richardson CD, Ray GJ, DeWitt MA, et al. Enhancing homol- ogy-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol. 2016; 34(3): 339-44.

Kocher T, Peking P, Klausegger A, et al. Cut and Paste: Efficient Homology-Directed Repair of a Dominant Negative KRT14 Mutation via CRISPR/Cas9 Nickases. Mol Ther. 2017; 25(11): 2585-2598.

Suzuki K, Tsunekawa Y, Hernandez-Benitez R, et al. In vivo ge- nome editing via CRISPR/Cas9 mediated homology-indepen- dent targeted integration. Nature. 2016; 540(7631): 144-149.

Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in au- tologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014; 370(10): 901-10. [49] Editas Medicine. https://www.editasmedicine.com (accessed February 2018)

Sangamo Therapeutics. https://www.sangamo.com/prod- uct-pipeline (accessed February 2018)

Sternberg SH, Redding S, Jinek M, et al. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature. 2014;507(7490): 62-7.

Müller M, Lee CM, Gasiunas G, et al. Streptococcus thermo- philus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome. Mol Ther. 2016; 24(3): 636-44.

Lee CM, Cradick TJ, Bao G. The Neisseria meningitidis CRISPR- Cas9 System Enables Specific Genome Editing in Mammalian Cells. Mol Ther. 2016; 24(3): 645-54.

Zhang JH, Adikaram P, Pandey M, et al. Optimization of genome editing through CRISPR-Cas9 engineering. Bioengineered. 2016; 7(3): 166-74.

Miller JC, Holmes MC, Wang J, et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol. 2007; 25(7): 778-85.

Sather BD, Romano Ibarra GS, Sommer K, et al. Efficient mod- ification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci Transl Med. 2015; 7(307): 307ra156.

Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013 Sep;31(9):822-6.

Bolukbasi MF, Gupta A, Oikemus S, et al. DNA-binding- domain fusions enhance the targeting range and precision of Cas9. Nat Methods. 2015; 12(12): 1150-6.

Slaymaker IM, Gao L, Zetsche B, et al. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016; 351(6268): 84-8.

Petris G, Casini A, Montagna C, et al. Hit and go CAS9 de- livered through a lentiviral based self-limiting circuit. Nat Commun. 2017; 8: 15334.

Hendel A, Bak RO, Clark JT, et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human prima- ry cells. Nat Biotechnol. 2015; 33(9): 985-989.

Lux CT, Scharenberg AM. Therapeutic Gene Editing Safety and Specificity. Hematol Oncol Clin North Am. 2017; 31(5): 787-795.

Martin F, Sánchez-Hernández S, Gutiérrez-Guerrero A, et al. Biased and Unbiased Methods for the Detection of Off-Target Cleavage by CRISPR/Cas9: An Overview. Int J Mol Sci. 2016; 17(9): E1507.

Gabriel R, Lombardo A, Arens A, et al. An unbiased ge-nome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol. 2011;29(9): 816-23.

Mali P, Aach J, Stranges PB, et al. CAS9 transcriptional acti- vators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013; 31(9): 833-8.

Tsai SQ, Zheng Z, Nguyen NT, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. 2015; 33(2): 187-197.

Hu J, Meyers RM, Dong J, et al. Detecting DNA double-strand- ed breaks in mammalian genomes by linear amplifica- tion-mediated high-throughput genome-wide translocation sequencing. Nat Protoc. 2016; 11(5): 853-71.

Park J, Childs L, Kim D, et al. Digenome-seq web tool for pro- filing CRISPR specificity. Nat Methods. 2017; 14(6): 548-549.

Veres A, Gosis BS, Ding Q, et al. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted hu- man stem cell clones detected by whole-genome sequenc- ing. Cell Stem Cell. 2014; 15(1): 27-30.

Mout R, Ray M, Lee YW, et al. In Vivo Delivery of CRISPR/ Cas9 for Therapeutic Gene Editing: Progress and Challenges. Bioconjug Chem. 2017; 28(4): 880-884.

Beane JD, Lee G, Zheng Z, et al. Clinical Scale Zinc Finger Nuclease-mediated Gene Editing of PD-1 in Tumor Infiltrating Lymphocytes for the Treatment of Metastatic Melanoma. Mol Ther. 2015; 23(8): 1380-1390.

Wang J, Exline CM, DeClercq JJ, et al. Homology-driven ge- nome editing in hematopoietic stem and progenitor cells us- ing ZFN mRNA and AAV6 donors. Nat Biotechnol. 2015; 33(12): 1256-1263.

Kim S, Kim D, Cho SW, et al. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ri- bonucleoproteins. Genome Res. 2014; 24(6): 1012-9.

Schumann K, Lin S, Boyer E, et al. Generation of knock-in pri- mary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci U S A. 2015; 112(33): 10437-42.

Holkers M, Maggio I, Liu J, et al. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res. 2013; 41(5): e63.

Lombardo A, Genovese P, Beausejour CM, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. 2007; 25(11): 1298-306.

Ding Q, Strong A, Patel KM, et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. 2014; 115(5): 488-92.

Asokan A, Schaffer DV, Samulski RJ. The AAV vector tool- kit: poised at the clinical crossroads. Mol Ther. 2012; 20(4): 699-708.

Anguela XM, Sharma R, Doyon Y, et al. Robust ZFN-mediated genome editing in adult hemophilic mice. Blood. 2013; 122(19): 3283-7.

Li H, Haurigot V, Doyon Y, et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature. 2011; 475(7355): 217-21.

Long C, Amoasii L, Mireault AA, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. 2016; 351(6271): 400-3.

Zhen S, Hua L, Liu YH, et al. Harnessing the clustered regu- larly interspaced short palindromic repeat (CRISPR)/CRISPR- associated Cas9 system to disrupt the hepatitis B virus. Gene Ther. 2015; 22(5): 404-12.

Lorden ER, Levinson HM, Leong KW. Integration of drug, protein, and gene delivery systems with regenerative med- icine. Drug Deliv Transl Res. 2015; 5(2): 168-86.

Sun W, Ji W, Hall JM, et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chem Int Ed Engl. 2015; 54(41): 12029-33.

Lee K, Conboy M, Park HM, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng, 2017; 1: 889-901.

Gaskell G, Bard I, Allansdottir A, et al. Public views on gene editing and its uses. Nat Biotechnol. 2017; 35(11): 1021-1023.

Kohn DB, Porteus MH, Scharenberg AM. Ethical and regulatory aspects of genome editing. Blood. 2016; 127(21): 2553-60.

Hyun I, Osborn C. Query the merits of embryo editing for reproductive research now. Nat Biotechnol. 2017; 35(11): 1023-1025.

Fogarty NME, McCarthy A, Snijders KE, et al. Genome edit- ing reveals a role for OCT4 in human embryogenesis. Nature. 2017; 550(7674): 67-73.

Cho S. W, Kim S, Kim J. M. & Kim J. S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013; 31, 230–232.

Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013; 153, 910–918.

Guo, X. & Li, X. J. Targeted genome editing in primate embry- os. Cell Res. 2015; 25: 767–768.

Ma H, Marti-Gutierrez N, Park SW, et al. Correction of a pathogenic gene mutation in human embryos. Nature. 2017; 548(7668): 413-419.

Cwik B. Designing Ethical Trials of Germline Gene Editing. N Engl J Med. 2017; 377(20): 1911-1913.

Cetin N, Balcı-Hayta B, Gundesli H, et al. A novel desmin mutation leading to autosomal recessive limb-girdle muscular dystrophy: distinct histopathological outcomes compared with desminopathies. J Med Genet. 2013; 50(7): 437-43.