CRISPR-based Approaches for the Point-of-Care Diagnosis of COVID19

CRISPR-based Approaches for the Point-of-Care Diagnosis of COVID19

Severe acute respiratory syndrome coronavirus -2 (SARS-CoV-2), is a novel Betacoronavirus variant that emerged in December 2019 causing the coronavirus disease 19 (COVID19) pandemic. It is reported that asymptomatic and presymptomatic individuals can transmit the virus and this silent transmission has been a major obstacle for the control of the pandemic. To overcome this obstacle, widespread testing with a rapid turnaround time is required. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is currently the golden standard for the diagnosis of COVID19 worldwide. Even though RT-qPCR is an efficient method in terms of sensitivity and specificity, the need for elaborate instrumentation and skilled personnel restricts its widespread use. Restriction of RT-qPCR to a limited number of laboratories makes it further time-consuming. Many approaches are present to address the requirement for a rapid and accurate COVID19 diagnosis. In this review, different CRISPR-based approaches for the point-of-care diagnosis of COVID19 are compared. Among these approaches, CRISPR-FDS on- chip assay is found to be the best option as it is reported to be highly sensitive and specific, has a short turnaround time (15 min), does not need RNA isolation or special tools, and simple to perform. In terms of clinical validation, SHERLOCK, STOPCovid, and DETECTR were the most extensively studied ones and they are also reported to be highly sensitive and specific compared to RT-qPCR.

___

  • 1] Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020;382:727-33.
  • [2] Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020;395:565- 74.
  • [3] Zhang YZ, Holmes EC. A Genomic Perspective on the Origin and Emergence of SARS-CoV-2. Cell 2020;181:223- 7.
  • [4] Chan JFW, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020;395:514-23.
  • [5] Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506.
  • [6] Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus- Infected Pneumonia in Wuhan, China JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT. JAMA 2020;323:1061-9.
  • [7] Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (CoVID-19) from publicly reported confirmed cases: Estimation and application. Ann Intern Med 2020;172:577-82.
  • [8] Pan Y, Zhang D, Yang P, Poon LLM, Wang Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect Dis 2020;20:411-2.
  • [9] Tong ZD, Tang A, Li KF, et al. Potential presymptomatic transmission of SARS-CoV-2, Zhejiang Province, China, 2020. Emerg Infect Dis 2020;26:1052-4.
  • [10] Ye F, Xu S, Rong Z, et al. Delivery of infection from asymptomatic carriers of COVID-19 in a familial cluster. Int J Infect Dis 2020;94:133-8.
  • [11] He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med 2020;26:672-5.
  • [12] Zou L, Ruan F, Huang M, et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med 2020;382:1177-9.
  • [13] Bai Y, Yao L, Wei T, et al. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA - J Am Med Assoc 2020;323:1406-7.
  • [14] Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. N Engl J Med 2020;382:970-1.
  • [15] Huff H V, Singh A. Asymptomatic Transmission During the Coronavirus Disease 2019 Pandemic and Implications for Public Health Strategies. Clin Infect Dis 2020;71:2752-6.
  • [16] Nuccetelli M, Pieri M, Grelli S, et al. SARS-CoV-2 infection serology: a useful tool to overcome lockdown? Cell Death Discov 2020;6:1-9.
  • [17] Xiang F, Wang X, He X, et al. Antibody Detection and Dynamic Characteristics in Patients with Coronavirus Disease 2019. Clin Infect Dis 2020;71:1930-4.
  • [18] Padoan A, Padoan A, Cosma C, Sciacovelli L, Faggian D, Plebani M. Analytical performances of a chemiluminescence immunoassay for SARS-CoV-2 IgM/IgG and antibody kinetics. Clin Chem Lab Med 2020;58:1081-8.
  • [19] Khatami F, Saatchi M, Zadeh SST, et al. A meta-analysis of accuracy and sensitivity of chest CT and RT-PCR in COVID-19 diagnosis. Sci Rep 2020;10:1-12.
  • [20] Böger B, Fachi MM, Vilhena RO, Cobre AF, Tonin FS, Pontarolo R. Systematic review with meta-analysis of the accuracy of diagnostic tests for COVID-19. Am J Infect Control 2021;49:21-9.
  • [21] Ai T, Yang Z, Hou H, et al. Correlation of Chest CT and RT- PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology 2020;296:E32-40.
  • [22] Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT- PCR. Eurosurveillance 2020; doi: 10.2807/1560-7917. ES.2020.25.3.2000045
  • [23] Patel A, Jernigan DB, 2019 nCoV CDC Response Team. Initial public health response and interim clinical guidance for the 2019 novel coronavirus outbreak - United States, December 31, 2019-February 4, 2020. Am J Transplant 2020;20:889-95.
  • [24] Lippi G, Simundic A-M, Plebani M. Potential preanalytical and analytical vulnerabilities in the laboratory diagnosis of coronavirus disease 2019 (COVID-19). Clin Chem Lab Med 2020; doi: 10.1515/cclm-2020-0285
  • [25] Long DR, Gombar S, Hogan CA, et al. Occurrence and timing of subsequent SARS-CoV-2 RT-PCR positivity among initially negative patients. MedRxiv 2020; doi: 10.1101/2020.05.03.20089151
  • [26] Dramé M, Tabue Teguo M, Proye E, et al. Should RT-PCR be considered a gold standard in the diagnosis of COVID-19? J Med Virol 2020;92:2312-3.
  • [27] Weissleder R, Lee H, Ko J, Pittet MJ. COVID-19 diagnostics in context. Sci Transl Med 2020;12:1931.
  • [28] Lazer D, Santillana M, Perlis RH, et al. The State of the nation: A 50-state COVID-19 survey report #8: Failing the test: Waiting times for covid dianostic tests across the U.S n.d.; doi: 10.31219/OSF.IO/GJ9X8
  • [29] Thompson D, Lei Y. Mini review: Recent progress in RT- LAMP enabled COVID-19 detection. Sensors and Actuators Reports 2020;2:100017.
  • [30] Linares M, Pérez-Tanoira R, Carrero A, et al. Panbio antigen rapid test is reliable to diagnose SARS-CoV-2 infection in the first 7 days after the onset of symptoms. J Clin Virol 2020;133:104659.
  • [31] Palaz F, Kalkan AK, Tozluyurt A, Ozsoz M. CRISPR-based tools: Alternative methods for the diagnosis of COVID-19. Clin Biochem 2021;89:1-13.
  • [32] ID NOW COVID-19- Letter of Authorization n.d. https:// www.fda.gov/media/136522/download (accessed May 16, 2021).
  • [33] Smithgall MC, Scherberkova I, Whittier S, Green DA. Comparison of Cepheid Xpert Xpress and Abbott ID Now to Roche cobas for the Rapid Detection of SARS-CoV-2. J Clin Virol 2020; doi: 10.1016/j.jcv.2020.104428
  • [34] Harrington A, Cox B, Snowdon J, et al. Comparison of abbott id now and abbott m2000 methods for the detection of sars-cov-2 from nasopharyngeal and nasal swabs from symptomatic patients. J Clin Microbiol 2020; doi: 10.1128/JCM.00798-20
  • [35] Coronavirus (COVID-19) Update: FDA Informs Public About Possible Accuracy Concerns with Abbott ID NOW Point-of- Care Test | FDA n.d. https://www.fda.gov/news-events/ press-announcements/coronavirus-covid-19-update- fda-informs-public-about-possible-accuracy-concerns- abbott-id-now-point (accessed May 15, 2021).
  • [36] Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR analysis: Real-time monitoring of DNA amplification reactions. Bio/Technology 1993;11:1026-30.
  • [37] Wong ML, Medrano JF. Real-time PCR for mRNA quantitation. Biotechniques 2005;39:75-85.
  • [38] Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res 1996;6:986-94.
  • [39] Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 1997;22:130-8.
  • [40] Wang AM, Doyle M V., Mark DF. Quantitation of mRNA by the polymerase chain reaction. Proc Natl Acad Sci U S A 1989;86:9717-21.
  • [41] CDC’s Diagnostic Test for COVID-19 Only and Supplies | CDC n.d. https://www.cdc.gov/coronavirus/2019-ncov/ lab/virus-requests.html (accessed May 16, 2021).
  • [42] Vogels CBF, Brito AF, Wyllie AL, et al. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT-qPCR primer-probe sets. Nat Microbiol 2020;5:1299-305.
  • [43] Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA - J Am Med Assoc 2020;323:1843-4.
  • [44] Yang Y, Yang M, Shen C, et al. Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections. MedRxiv 2020; doi: 10.1016/j.xinn.2020.100061
  • [45] Ishino Y, Shinagawa H, Makino K, Amemura M, Nakatura A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isoenzyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 1987;169:5429-33.
  • [46] Mojica FJM, Díez-Villaseñor C, Soria E, Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 2000;36:244-6.
  • [47] Makarova KS, Grishin N V., Shabalina SA, Wolf YI, Koonin E V. A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 2006;1:1-26.
  • [48] Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science (80- ) 2007;315:1709-12.
  • 49] Jiang F, Doudna JA. CRISPR-Cas9 Structures and Mechanisms. Annu Rev Biophys 2017;46:505-29.
  • [50] Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science (80- ) 2014; doi: 10.1126/science.1258096.
  • [51] Myhrvold C, Freije CA, Gootenberg JS, et al. Field- deployable viral diagnostics using CRISPR-Cas13. Science (80- ) 2018;360:444-8.
  • [52] Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a and Csm6. Science (80- ) 2018;360:439-44.
  • [53] Ai JW, Zhou X, Xu T, et al. CRISPR-based rapid and ultra- sensitive diagnostic test for Mycobacterium tuberculosis. Emerg Microbes Infect 2019;8:1361-9.
  • [54] Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science (80- ) 2018;360:436-9.
  • [55] Joung J, Ladha A, Saito M, et al. Detection of SARS- CoV-2 with SHERLOCK One-Pot Testing. N Engl J Med 2020;383:1492-4.
  • [56] Joung J, Ladha A, Saito M, et al. Point-of-care testing for COVID-19 using SHERLOCK diagnostics. MedRxiv 2020; doi: 10.1101/2020.05.04.20091231
  • [57] Wyllie AL, Fournier J, Casanovas-Massana A, et al. Saliva or Nasopharyngeal Swab Specimens for Detection of SARS- CoV-2. N Engl J Med 2020;383:1283-6.
  • [58] Broughton JP, Deng X, Yu G, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol 2020;38:870-4.
  • [59] Broughton JP, Deng W, Fasching CL, Singh J, Chiu CY, Chen JS. A protocol for rapid detection of the 2019 novel coronavirus SARS-CoV-2 using CRISPR diagnostics: SARS- CoV-2 DETECTR. n.d.
  • [60] Vinet L, Zhedanov A. SARS-CoV-2 RNA DETECTR Assay. vol. 44. 2011.
  • [61] Brandsma E, Verhagen HJMP, van de Laar TJW, Claas ECJ, Cornelissen M, van den Akker E. Rapid, Sensitive, and Specific Severe Acute Respiratory Syndrome Coronavirus 2 Detection: A Multicenter Comparison Between Standard Quantitative Reverse-Transcriptase Polymerase Chain Reaction and CRISPR-Based DETECTR. J Infect Dis 2021;223:206-13.
  • [62] Abugattás Núñez del Prado J, Quintana Reyes A, Blume La Torre J, et al. Clinical validation of RCSMS: a rapid and sensitive CRISPR-Cas12a test for the molecular detection of SARS-CoV-2 from saliva Hospital Nacional. MedRxiv 2021; doi: 10.1101/2021.04.26.21256081
  • [63] Ding X, Yin K, Li Z, Liu C. All-in-One Dual CRISPR-Cas12a (AIOD-CRISPR) Assay: A Case for Rapid, Ultrasensitive and Visual Detection of Novel Coronavirus SARS-CoV-2 and HIV virus. BioRxiv 2020; doi: 10.1101/2020.03.19.998724
  • [64] Guo L, Sun X, Wang X, et al. SARS-CoV-2 detection with CRISPR diagnostics. Cell Discov 2020;6:1-4.
  • [65] Teng F, Guo L, Cui T, et al. CDetection: CRISPR-Cas12b- based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biol 2019;20:1-7.
  • [66] Wang R, Qian C, Pang Y, et al. opvCRISPR: One-pot visual RT-LAMP-CRISPR platform for SARS-cov-2 detection. Biosens Bioelectron 2021;172:112766.
  • [67] Ning B, Yu T, Zhang S, et al. A smartphone-read ultrasensitive and quantitative saliva test for COVID-19. Sci Adv 2021;7:eabe3703.
  • [68] Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science (80- ) 2017;356:438-42.
  • [69] Myhrvold C, Freije CA, Gootenberg JS, et al. Field- deployable viral diagnostics using CRISPR-Cas13. vol. 360. 2018.
  • [70] Zhang F, Abudayyeh OO, Gootenberg JS. A protocol for detection of COVID-19 using CRISPR diagnostics. n.d.
  • [71] U.S. Food & Drug Administration. Determination of a Public Health Emergency and Declaration that Circumstances Exist Justifying Authorizations Pursuant to Section 564(b) of the Federal Food, Drug, and Cosmetic Act, 21 U.S.C. § 360bbb-3 . FDA 2020;2:1-8.
  • [72] Patchsung M, Jantarug K, Pattama A, et al. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nat Biomed Eng 2020;4:1140-9.
  • [73] Arizti-Sanz J, Freije CA, Stanton AC, et al. Integrated sample inactivation, amplification, and Cas13-based detection of SARS-CoV-2. BioRxiv 2020; doi:10.1101/2020.05.28.119131
  • [74] Hou T, Zeng W, Yang M, et al. Development and evaluation of a rapid CRISPR-based diagnostic for COVID-19. PLoS Pathog 2020; doi: 10.1371/journal.ppat.1008705
  • [75] Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA - J Am Med Assoc 2020;323:1843-4.
  • [76] Interim Guidelines for Clinical Specimens for COVID-19 | CDC n.d. https://www.cdc.gov/coronavirus/2019-ncov/ lab/guidelines-clinical-specimens.html (accessed May 15, 2021).
  • [77] Agarwal A, Fernando SM, Honarmand K, et al. Risk of dispersion or aerosol generation and infection transmission with nasopharyngeal and oropharyngeal swabs for detection of COVID-19: A systematic review. BMJ Open 2021;11:e040616.
  • [78] Ying Wong SC, Tse H, Siu HK, et al. Posterior oropharyngeal saliva for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020;71:2939-46.
  • [79] Niu A, McDougal A, Ning B, et al. COVID-19 in allogeneic stem cell transplant: high false-negative probability and role of CRISPR and convalescent plasma. Bone Marrow Transplant 2020;55:2354-6.
  • [80] Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLoS Biol 2006;4:1115-21.
  • [81] Joung J, Ladha A, Saito M, et al. Detection of SARS- CoV-2 with SHERLOCK One-Pot Testing. N Engl J Med 2020;383:1492-4.
  • [82] Tian B, Minero GAS, Fock J, Dufva M, Hansen MF. CRISPR- Cas12a based internal negative control for nonspecific products of exponential rolling circle amplification. Nucleic Acids Res 2020;48:E30.
  • [83] Rolando JC, Jue E, Barlow JT, Ismagilov RF. Real-time kinetics and high-resolution melt curves in single-molecule digital LAMP to differentiate and study specific and non-specific amplification. Nucleic Acids Res 2021;48:42.
  • 84] El-Tholoth M, Bau HH, Song J. A Single and Two-Stage, Closed-Tube, MolecularTest for the 2019 Novel Coronavirus (COVID-19) at Home, Clinic, and Points of Entry. ChemRxiv 2020; doi: 10.26434/chemrxiv.11860137.v1
  • [85] Wei S, Kohl E, Djandji A, et al. Field-deployable, rapid diagnostic testing of saliva samples for SARS-CoV-2 n.d.; doi: 10.1101/2020.06.13.20129841
  • [86] ZhangY,OdiwuorN,XiongJ,etal.Rapidmoleculardetection of SARS-CoV-2 (COVID-19) virus RNA using colorimetric LAMP. MedRxiv 2020; doi: 10.1101/2020.02.26.20028373
  • [87] Fozouni P, Son S, Díaz de León Derby M, et al. Amplificationfree detection of SARS-CoV-2 with CRISPR- Cas13a and mobile phone microscopy. Cell 2021;184:323- 333.e9.
  • [88] Xiang J, Yan M, Li H, et al. Evaluation of enzyme-linked immunoassayandcolloidalgold-immunochromatographic assay kit for detection of novel coronavirus (SARS-Cov-2) causing an outbreak of pneumonia (COVID-19). MedRxiv 2020; doi: 10.1101/2020.02.27.20028787
  • [89] Tang JW, Tambyah PA, Hui DS. Emergence of a new SARS- CoV-2 variant in the UK. J Infect 2021;82:e27-8.
  • [90] Cherian S, Potdar V, Jadhav S, et al. Convergent evolution of SARS-CoV-2 spike mutations, L452R, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India. BioRxiv 2021; doi: 10.1101/2021.04.22.440932
  • [91] Tegally H, Wilkinson E, Giovanetti M, et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. MedRxiv 2020;10:2020.12.21.20248640.
  • [92] Lai L, Sahoo MK, Floyd K, et al. Infection and vaccine- induced neutralizing antibody responses to the SARS- CoV-2 B.1.617.1 1 variant 2 3 Venkata-Viswanadh Edara. BioRxiv 2021; doi: 10.1101/2021.05.09.443299
  • [93] Yadav PD, Sapkal GN, Abraham P, et al. Neutralization of variant under investigation B.1.617 with sera of BBV152 vaccinees. BioRxiv 2021; doi: 10.1093/cid/ciab411
  • [94] Ferreira I, Datir R, Papa G, et al. SARS-CoV-2 B.1.617 emergence and sensitivity to vaccine-elicited antibodies. BioRxiv 2021; doi: 10.1101/2021.05.08.443253
  • [95] Xie X, Zou J, Fontes-Garfias CR, et al. Neutralization of N501Y mutant SARS-CoV-2 by BNT162b2 vaccine-elicited sera. BioRxiv 2021; doi: 10.1101/2021.01.07.425740
  • [96] Ackerman CM, Myhrvold C, Thakku SG, et al. Massively multiplexed nucleic acid detection with Cas13. Nature 2020;582:277-82.
  • [97] Gu W, Miller S, Chiu CY. Clinical Metagenomic Next- Generation Sequencing for Pathogen Detection. Annu Rev Pathol Mech Dis 2019;14:319-38.
Acta Medica-Cover
  • ISSN: 2147-9488
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: HACETTEPE ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Anesthetic Management with Dexmedetomidine During the Awake Craniotomy Surgery: A Case Report

Şennur Uzun, Turana Rasulova

Publication Status of Urology Theses in Turkey

Emrullah Söğütdelen, Mustafa Küçükyangöz

Comparison of Clinical Profiles, Angiographic Features and Outcomes of Young and Elderly Patients with ST-Segment Elevation Myocardial Infarction

Bektaş Murat, Selda Murat

Dyspnea and Dysphagia as First Sign of Hypopharyngoesophageal Lipoma

Monika Adásková, Katarína Obtulovičová, Marian Sicak

The Potential Use of Elastic Tissue Autofluorescence in Formalin- fixed Paraffin-embedded Skin Biopsies

Deniz Ateş Özdemir, Kader Susesi

Evaluation of Sleep Quality with Use of Angiotensin Receptor Neprilysin Inhibitor in Patients with Reduced Ejection Fraction Heart Failure

Ferhat Işık, Metin Okşul, Burhan Aslan, Ercan Taştan

The Factors Related to the 6 Minute Walk Test: The Experience of a Referral Lung Transplantation Center

Pınar Atagün Güney

CRISPR-based Approaches for the Point-of-Care Diagnosis of COVID19

İhsan Alp Uzay, Pervin Dinçer

Comparison of Favipiravir to Hydroxychloroquine Plus Azithromycin in the Treatment of Patients with Non-critical COVID-19: A Single- center, Retrospective, Propensity Score-matched Study

Oğuz Abdullah Uyaroğlu, Meliha Çağla Sönmezer, Gülçin Telli Dizman, Nursel Çalık Başaran, Sevilay Karahan, Ömrüm Uzun

The Relationship Between ST-Segment Depression in Lead aVR and Coronary Microvascular Function in Acute Inferior Myocardial Infarction

Burhan Aslan, Mehmet Zülküf Karahan