Femur kırıklarının intrameduller çivi ile tedavisinde radyasyon maruziyeti azaltılabilir mi?

Amaç: Bu  çalışmada, serbest el tekniği ve elektromanyetik navigasyon sistemi ile distal kilitleme yapılan intramedüller çivi ameliyatı yapılan olguları, cerrahi süresi ve radyasyon maruziyeti açısından karşılaştırmayı amaçladık. Yöntem:  Şubat 2012-Şubat 2013 arasında femur kırığı olan  40 hasta değerlendirildi. Distal manyetik kilitlemeli İntramedüller Çivileme (DMK+) ve  distal serbest el kilitli intramedüller çivileme (DMK-) tekniği ile operasyon yapıldı. Distal kilitleme sırasında kullanılan floroskopi süresi, radyasyon maruziyeti ve cerrahi süresi karşılaştırıldı. Alınan radyasyon dozu; TC sivil savunma müdürlüğünden temin edilen NAB 223 marka radyasyon ölçer ile ölçüldü. Bulgular: DMK (-) grubunda 20 femur kırığı mevcuttu.  Distal kilitleme sırasında ortalama skopi süresi33,7± 12,6 idi, ameliyat süresi 68.50±7.1dk idi. Radyasyon dozu femur kırığı için 461,7±172,7 idi.  DMK (+) grubunda 20 hastada femur kırığı mevcuttu. Distal kilitleme sırasında ortalama skopi süresi  29±17,6 idi,  ameliyat süresi 66.25±10.1 dk. İdi. Radyasyon dozu ise 397,3±241,1 idi. Sonuç: Uzun kemik kırıklarına uygulanan İntramedüller Çivileme tekniklerini karşılaştırdığımız bu çalışmada distal manyetik kilitlemeli İntramedüller civilerin alınan skopi sayısı, ameliyat süresi ve kanama miktarını kilitsiz intramedüller çivilere göre anlamlı şekilde azaltmadığı gözlenmiştir (p>0.05).  

Can radiation exposure be reduced in thetreatment of femur fractures with the Intrameduller nail?

Aim: In this study, our aim is to compare surgery time and radiation exposure for  patients of treated with two different intramedullar nail distal locking systems; free-hand technique and electromagnetic navigation system.Method: We evaluated 40 patients' femur fractures.  we treated with Intramedullar Nail due to femur fractures between the dates of February 2012 and February 2013 were operated on by two different distal locking techniques; Distal Electromagnetic guided technique(DML+) and Free-hand Technique(DML-). Radiation exposure was measured by radiationmeter (NAB223) obtained from Civil Defense Directorate. Results: In group DML(-) 20 femur fractures were evaluated. Mean flouroscopy time was 33,7± 12,6, operation time 68.5±7.1 minutes and whole radiation exposure was 461,7±172,7. In group DML(-) 20 femur fractures were evaluated. Mean flouroscopy time was 29±17,6,operation time 66.25±10.1 minutes and whole radiation exposure was 397,3±241,1.Concllusion: In this study we compared distal locking time, radiation exposure and fluoroscopy shoot by using two different distal locking techniques in long bone fractures and found no significant  differences in both of techniques (p>0.05).

___

  • 1. Asche G. [Results of the treatment of femoral and tibial fractures following interlocking nailing and plate osteosynthesis. A comparative retrospective study]. Zentralbl Chir. Germany; 1989;114(17):1146–54.
  • 2. Oszwald M, Westphal R, Stier R, Gaulke R, Calafi A, Muller CW, et al. Hands-on robotic distal interlocking in intramedullary nail fixation of femoral shaft fractures. Technol Health Care 2010;18(4–5):325–34.
  • 3. Noordeen HH, Sala MJ, Belham GJ. Insertion of distal screws in interlocking intramedullary nails. Injury 1993;24(5):357–8.
  • 4. Hashemi-Nejad A, Garlick N, Goddard NJ. A simple jig to ease the insertion of distal screws in intramedullary locking nails. Injury 1994;25(6):407–8.
  • 5. Uruc V, Ozden R, Dogramaci Y, Kalaci A, Dikmen B, Yildiz OS, et al. The comparison of freehand fluoroscopic guidance and electromagnetic navigation for distal locking of intramedullary implants. Injury 2013;44(6):863–6.
  • 6. Stathopoulos I, Karampinas P, Evangelopoulos DS, Lampropoulou-Adamidou K, Vlamis J. Radiation-free distal locking of intramedullary nails: Evaluation of a new electromagnetic computer-assisted guidance system. Injury 2013;44(6):872–5.
  • 7. Aldemir C, Doğan A, Inci F, Sertkaya O, Duygun F. [Distal locking techniques without fluoroscopy in intramedullar nailing]. Eklem Hastalık Cerrahisi 2014;25(2):64–9.
  • 8. Sancaktutar AA, Söylemez H. The Use of Fluoroscopy and Radiation Protection During Percutaneous Nephrolithotomy. Turk Urol Sem 2011; 2: 325-30 Turkish.
  • 9. Lee YS, Lee HK, Cho JH, Kim HG. Analysis of radiation risk to patients from intra-operative use of the mobile X-ray system (C-arm). J Res Med Sci. 2015 Jan;20(1):7-12.
  • 10. Ehlinger M, Dillman G, Czekaj J, Adam P, Taglang G, Brinkert D et al. Distal targeting device for long Gamma nail®. Monocentric observational study. Orthopaedics & Traumatology: Surgery & Research (2013) 99, 799-804
  • 11. Kim KP, Miller DL, Berrington de Gonzalez A, Balter S, Kleinerman RA, Ostroumova E et al. Occupational radiation doses to operators performing fluoroscopically-guided procedures. Health Phys. 2012;103(1):80-99.
  • 12. Kesavachandran CN, Haamann F, Nienhaus A. Radiation exposure of eyes, thyroid gland and hands in orthopaedic staff: a systematic review. Eur J Med Res. 2012;17(1):28.
  • 13. Winquist R. Locked Femoral Nailing. J Am Acad Orthop Surg. 1993;1(2):95–105.
  • 14. Abdlslam KM, Bonnaire F. Experimental model for a new distal locking aiming device for solid intramedullary tibia nails. Injury 2003;34(5):363–6.
  • 15. Atay T, Aydoğan FC, Kırdemir V, Baykal YB, Aslan A, Baydar ML. Femur Diafiz Kırıklarında Genişleyebilir İntramedüller Çivi Sonuçlarımız. Kocatepe Tıp Dergisi 2008;9(2):9-13.
  • 16. Sanders R, Koval KJ, DiPasquale T, Schmelling G, Stenzler S, Ross E. Exposure of the orthopaedic surgeon to radiation. J Bone Joint Surg Am. 1993 ;75(3):326-30.
  • 17. Tasbas BA, Yagmurlu MF, Bayrakci K, Ucaner A, Heybeli M. Which one is at risk in intraoperative fluoroscopy? Assistant surgeon or orthopaedic surgeon? Arch Orthop Trauma Surg.2003;123(5):242–4
  • 18. Kamarianakis Z, Buliev I, Pallikarakis N. Robust identification and localization of intramedullary nail holes for distal locking using CBCT: A simulation study. Med Eng Phys. 2011;33(4):479–89.
  • 19. Maqungo S, Horn A, Bernstein B, Keel M, Roche S. Distal interlocking screw placement in the femur: free-hand versus electromagnetic assisted technique (sureshot). J Orthop Trauma. 2014;28(12):e281-3.
  • 20. Langfitt MK, Halvorson JJ, Scott AT, Smith BP, Russell GB, Jinnah RH, et al. Distal locking using an electromagnetic field-guided computer-based real-time system for orthopaedic trauma patients. J Orthop Trauma. 2013;27(7):367–72.
  • 21. Anastopoulos G, Ntagiopoulos PG, Chissas D, Loupasis G, Asimakopoulos A, Athanaselis E, et al. Evaluation of the Stryker S2TM IM Nail Distal Targeting Device for reduction of radiation exposure: A case series study. Injury 2008;39(10):1210–5.
  • 22. Suhm N, Messmer P, Zuna I, Jacob LA, Regazzoni P. Fluoroscopic guidance versus surgical navigation for distal locking of intramedullary implants: A prospective, controlled clinical study. Injury 2004;35(6):567–74.
  • 23. Boraiah S, Barker JU, Lorich D. Efficacy of an aiming device for the placement of distal interlocking screws in trochanteric fixation nailing. Arch Orthop Trauma Surg. 2009;129(9):1177–82.