Sb Katkılı CuO Filmlerinin Yapısal ve Optik Özellikleri

(111) tercihli yönelimli Sb katkılı CuO ince film, çeşitli ağırlık oranlarında (ağırlıkça % 0, 1, 2 ve 3 Sb), soda kireç cam alttaşı (SLG) üzerine dönel kaplama tekniği kullanılarak büyütüldü. Farklı Sb katkısının CuO filmlerin yapısal, morfolojik ve optik özellikleri üzerindeki etkisi, X-ışını difraksiyon (XRD) ünitesi, taramalı elektron mikroskobu (SEM) ve UV-vis spektrofotometresi kullanılarak kapsamlı bir şekilde incelenmiştir. Filmlerin X ışını kırınım spektroskopi çalışmaları, ince filmlerin tercihli yönelim boyunca polikristal doğaya sahip olduklarını göstermektedir. Tüm CuO ince film morfolojisi yüzeyde kusur olmaksızın homojen doğaya sahip olduğunu göstermektedir. Elde edilen CuO filmlerin geçirgenliği, Sb içeriğindeki artışla değişmiştir. Ultraviyole görünür bölge spektrofotometre ölçümleri, elde edilen filmlerin enerji bant aralığında 1.70'den 2.37 eV'ye kadar radikal bir şekilde artış olduğunu göstermektedir. Sb katkılı CuO ince film optik özelliklerinin önemli ölçüde değiştiği söylenebilir.

Structural and Optical Properties of Sb Doped CuO Films

Preferentially (111) oriented Sb-doped CuO thin film with various weight fractions (0, 1, 2 and 3 wt% of Sb) have been grown on soda-lime glass substrate (SLG) by spin coating technique. The effect of Sb doping in different amounts on the structural, morphological and optical properties of CuO films was comprehensively investigated via X-ray diffraction (XRD) unit, scanning electron microscopy (SEM) and UV–vis spectrophotometer. X-ray diffraction spectroscopy studies of the films indicate that thin films are polycrystalline nature along the preferential direction. The morphology of all CuO thin film is uniform with no cracking in the surface. The transmittance of the CuO films changed with an increase in Sb content. Ultraviolet–visible spectrophotometer measurements indicate that a radical increase in the energy band gap of the films with an increase in Sb content from 1.70 to 2.37 eV. It can be said that the optical properties of the Sb doped CuO thin film were significantly changed.

___

  • [1]. M. Sahooli, S. Sabbaghi and R. Saboori, “Synthesis and characterization of mono sized CuO nanoparticles”, Materials Letters, vol. 81, no 15, pp. 169-172, August 2012.
  • [2]. P. Ball and L. Garwin, “Science at the atomic scale. Nature”, vol. 355, no. 6363, pp. 761-766, February 1992.
  • [3]. LC. Chen, “Review of preparation and optoelectronic characteristics of Cu2O-based solar cells with nanostructure”, Materials Science in Semiconductor Processing, vol. 16, no.5, pp. 1172-1185, October 2013.
  • [4]. X. Zhang, D. Zhang, X. Ni and H. Zheng “Optical and electrochemical properties of nanosized CuO via thermal decomposition of copper oxalate”, Solid-State Electronics, vol. 52, no. 2, p p. 245-248, February 2008.
  • [5]. Gou, X., G. Wang, J. Yang, J. Parka and D. Wexlera “Chemical synthesis, characterisation and gas sensing performance of copper oxide nanoribbons”, Journal of Materials Chemistry, vol. 18, no. 9, pp. 965-969, 2008.
  • [6]. J. Tamaki, K. Shimanoe, Y. Yamada, Y. Yamamoto, N. Miura and N. Yamazoe “Dilute hydrogen sulfide sensing properties of CuO–SnO2 thin film prepared by low-pressure evaporation method”, Sensors and Actuators B: Chemical, vol. 49, no. 1, pp. 121-125, June 1998.
  • [7]. SD. Seo, YH. Jin, SH. Lee, HW. Shim and DW. Kim “Low-temperature synthesis of CuO-interlaced nanodiscs for lithium ion battery electrodes”, Nanoscale Res. Lett, vol. 6: pp. 2-7, May 2011.
  • [8]. N. Topnani, S. Kushwaha and T. Athar, “Wet synthesis of copper oxide nanopowder”, International Journal of Green Nanotechnology: Materials Science & Engineering, vol. 1, no. 2, pp. 67-73, November 2010.
  • [9]. K. Mageshwari, SS. Mali, R Sathyamoorthy and PS:. Patil “Template-free synthesis of MgO nanoparticles for effective photocatalytic applications”, Powder technology, vol. 249 , pp. 456-462, November 2013.
  • [10]. DP. Dubal, GS. Gund, CD. Lokhande and R. Holze “CuO cauliflowers for supercapacitor application: Novel potentiodynamic deposition”, Materials Research Bulletin, vol. 48, no. 2, pp. 923-928, February 2013.
  • [11]. NM. Basith, JJ. Vijaya, LJ. Kennedy and M. Bououdina “Structural, morphological, optical, and magnetic properties of Ni-doped CuO nanostructures prepared by a rapid microwave combustion method”, Materials Science in Semiconductor Processing, vol. 17, p p. 110-118, September 2014.
  • [12]. İY. Erdoğan and Ö. Güllü, “Optical and structural properties of CuO nanofilm: its diode application”, Journal of Alloys and Compounds, vol. 492, no. 1, pp. 378-383, March 2010.
  • [13]. B. Balamurugan and B. Mehta, “Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation”, Thin Solid Films, vol. 396, no.1, pp. 90-96, September 2001.
  • [14]. F. Marabelli, G. Parravicini and F. Salghetti Drioli, “Optical gap of CuO”, Physical Review B, vol. 52, no. 3, pp. 1433, July 1995.
  • [15]. J. Ghijsen, LH. Tjeng, JV. Elp, H. Eskes, J. Westerink, GA. Sawatzky and MT. Czyzyk “Electronic structure of Cu2O and CuO”, Physical Review B, vol. 38, no. 16, pp. 11322, December 1988. l of Applied Physics, vol. 101, no. 9, pp. 11322, December 1988.
  • [16]. A. Oral, E. Menşur, MH. Aslan and E. Başaran “The preparation of copper (II) oxide thin films and the study of their microstructures and optical properties”, Materials Chemistry and Physics, vol. 83, no. 1, pp. 140-144, September 2004.
  • [17]. T. Itoh and K. Maki “Preferentially oriented thin-film growth of CuO (111) Cu2O (001) on MgO (001) substrate by reactive dc-magnetron sputtering”, Vacuum, vol. 81, no. 7, pp. 904-910, February 2007.
  • [18]. K. Kawaguchi, R Kita, M. Nishiyama and T. Morishita “Molecular beam epitaxy growth of CuO and Cu2O films with controlling the oxygen content by the flux ratio of Cu/O+”, Journal of Crystal Growth, vol. 143, no. 3-4, pp. 221-226, October 1994.
  • [19]. M. Faisal, SB. Khan, MM. Rahman, A. Jamal and A. Umar “Ethanol chemi-sensor: Evaluation of structural, optical and sensing properties of CuO nanosheets”, Materials Letters, vol. 65, no. 9, pp. 1400-1403, May 2011.
  • [20]. M. Petrantoni, C. Rossi, V. Conedera, D. Bourrier, P. Alphonse and C. Tenailleau “Synthesis process of nanowired Al/CuO thermite”, Journal of Physics and Chemistry of Solids, vol. 71, no. 2, pp. 80-83, February 2010.
  • [21]. L. Zhang, R. Liu and H. Yang “Preparation and sonocatalytic activity of monodisperse porous bread-like CuO via thermal decomposition of copper oxalate precursors”, Physica E: Low-dimensional Systems and Nanostructures, vol. 44, no. 7, pp. 1592-1597, April 2012.
  • [22]. M. Petrantoni, C. Rossi, L. Salvagnac, V. Conedera, A. Esteve, C. Tenailleau, P. Alphonse and J. Chabal “Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro”, Journal of Applied Physics, vol. 108, no. 8,: pp. 084323, October 2010.
  • [23]. A. Chen, H. Long, X. Li, Y. Li, G. Yang and P. Lu “Controlled growth and characteristics of single-phase Cu2O and CuO films by pulsed laser deposition”, Vacuum, vol. 83, no. 6, pp. 927-930, February 2009.
  • [24]. HY. Bae and GM. Choi, “Electrical and reducing gas sensing properties of ZnO and ZnO–CuO thin films fabricated by spin coating method”, Sensors and Actuators B: Chemical, vol. 55, no. 1, pp. 47-54, April 1999.
  • [25]. T. Tsuchiya, T. Emoto and T. Sei, “Preparation and properties of transparent conductive thin films by the sol-gel process”, Journal of Non-Crystalline Solids, vol. 178, pp. 327-332, November 1994.
  • [26]. SG. Bahoosh, AT. Apostolov, IN. Apostolova and JM. wesselinowa “Theory of phonon properties in doped and undoped CuO nanoparticles”, Physics Letters A, vol. 376, no. 33, pp. 2252-2255, July 2012.
  • [27]. DP. Joseph, C. Venkateswaran, S. Sambasivam and BC. Choi “Effect of Fe alloying on the structural, optical, electrical and magnetic properties of spray-deposited CuO thin films”, Journal of the Korean Physical Society, vol.. 61, no. 3, pp. 449-454, August 2012.
  • [28]. T. Itoh and K. Maki “Preferentially oriented thin-film growth of CuO(111) and CueO(001) on MgO(001) substrate by reactive dc-magnetron sputtering”, Vacuum, vol. 8, no. 7, pp. 904-910, February 2007.
  • [29]. A. Rydosz and A. Szkudlarek “Gas-sensing performance of M-doped CuO-based thin films working at different temperatures upon exposure to propane”, Sensors, vol. 15, no. 8, pp. 20069-20085, August 2015.
  • [30]. H. Zhu, F. Zhao, L. Pan, Y. Zhang, C. Fan, and Y. Zhang “Structural and magnetic properties of Mn-doped CuO thin films”, Journal of Applied Physics, vol. 101, pp. 9H111, December 2007.
  • [31]. P. Chand, A Gaur, A. Kumar and UK. Gaur “Structural and optical study of Li doped CuO thin films on Si (100) substrate deposited by pulsed laser deposition”, Applied Surface Science, vol. 307, pp. 280-286, July 2014.
  • [32]. JS. Shaikh, RC. Pawar, RS. Devan, YR. Ma, PP. Salvi, SS. Kolekar and PS. Patil “Synthesis and characterization of Ru doped CuO thin films for supercapacitor based on Bronsted acidic ionic liquid”, Electrochimica Acta, vol. 56, no.5. pp. 2127-2134, February 2011.
  • [33]. J. Oh, H. Ryu and W J. Lee, “Effects of Fe doping on the photoelectrochemical properties of CuO photoelectrodes”, Composites Part B: Engineering, vol. 163, pp. 59-66, April 2019.
  • [34]. YD. Yun, SK. Baek, JS. Kim, YB. Kim, SH. Jung, Y. Kim and HK. Cho “Optimal synthesis of antimony-doped cuprous oxides for photoelectrochemical applications”, Thin Solid Films, vol. 671, pp. 120-126, February 2019.
  • [35]. SC. Ray “Preparation of copper oxide thin film by the sol–gel-like dip technique and study of their structural and optical properties”, Solar energy materials and solar cells, vol 68. pp. 307-312, June 2001.
  • [36]. T. Maruyama “Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate”, Solar energy materials and solar cells, vol. 56, pp. 85-92, September 1998.
  • [37]. KH. Yoon, WJ. Choi and DH. Kang “Photoelectrochemical properties of copper oxide thin films coated on an n-Si substrate”, Thin Solid Films, vol. 372, pp. 250-256, September 2000.
  • [38]. P. Luzeau, XZ. Xu and M. Laguës “Copper oxide thinfilm growth using an oxygen plasma source”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 8, pp. 3938-3940, July 1990.
  • [39]. Y. Gülen, F.Bayansal, B.Şahin, HA. Çetinkara and HS. Güder “Fabrication and characterization of Mn-doped CuO thin films by the SILAR method”, Ceramics International, vol. 39, pp. 6475-6480, August 2013.
  • [40]. Ş. Baturay, A. Tombak, D. Kaya, YS. Ocak, M. Tokus, M. Aydemir and T. Kilicoglu “Modification of electrical and optical properties of CuO thin films by Ni doping”, Journal of Sol-Gel science and Technology, vol. 78, no. 2, pp. 422- 429, May 2016.
  • [41]. DP. Joseph, C. Venkateswaran, S. Sambasivam and BB. Choi “Effect of Fe alloying on the structural, optical, electrical and magnetic properties of spray-deposited CuO thin films”, Journal of the Korean Physical Society, vol. 61, no.3, pp. 449-454, August 2012.
  • [42]. A. Yildiz, Ş. Horzum, N. Serin and T. Serin “Hopping conduction in In-doped CuO thin films”, Applied Surface Science, vol. 318, pp. 105-107, November 2014.