Kitosan-Vermikülit Kompoziti Kullanılarak Sulu Çözeltiden Etkin Kurşun Giderimi: Denge, Kinetik ve Termodinamik Çalışmalar

Bu çalışmada, sulu çözeltiden kurşun iyonlarının etkin giderimi için düşük maliyetli, doğal etkin bir adsorban, kitosan (Ch) – vermikülit (V) kompozit materyali sentezlenmiştir. Ch-V kompoziti FT-IR SEM-EDX ve PZC analizleri ile karakterize edilmiştir. Pb2+ için Ch-V kompozitinin adsorban özellikleri adsorpsiyonun pH, derişim, kinetik (zaman), termodinamik (sıcaklık) ve geri kazanım açısından değerlendirilmiştir. Elde edilen deneysel veriler Langmiur, Freundlich ve Dubinin Radushkevich izoterm modellerine uygulanmış ilgili parametreler türetilmiştir. Langmiur eiştliğinden maksimum adsorpsiyon kapasitesi 0.154 molkg-1 ve KL değeri ise 3441 Lmol-1 olarak bulunmuştur. Freudlich modelinden adsorpsiyon kapasitesinin bir ölçüsü olan XF 10.3 ve β yüzey heterojenliği ise 0.537 bulunmuştur. Sonuçlar deneysel verilerin Freundlich modeline daha iyi uyum sağladığını ortaya koymuştur. Dubinin Radushkevich modelinden adsorpsiyon enerjisi 9.7 kJ mol-1 olarak bulunmuştur ki bu durum adsorpsiyon sürecinin kimyasal olduğunu ifade etmektedir. Adsorpsiyon kinetiğinin yalancı ikinci derece modele uyum sağladığı görülmüştür. Adsorpsiyonun termodinamik değerlendirilmesinden ΔH0 değeri 5.09 kjmol-1 bulunmuştur ki bu durum adsorpsiyonun endotermik olduğunu işaret eder. ΔS0 ise 69.7 Jmol-1K-1 olarak bulunmuştur ki bu durum adsorpsiyon sürecinde biyosorbent/çözelti arayüzündeki rastgelelikte bir artma olduğunu gösterir. 298.15 0C için Gibbs serbest enerji değişimi, -15.7 kJ mol-1 olarak bulunmuştur ve bu durum adsorpsiyonun kendiliğinden olduğunu göstermiştir. Geri kazanım çalışmaları Ch-V kompozitinin iyi bir adsorpsiyon/desorpsiyon performansına sahip olduğunu göstermiştir.

Efficient Lead Removal from Aqueous Solution Using Chitosan-Vermiculite Composite: Equilibrium, Kinetic and Thermodynamic Studies

In this study, a cost effective, naturally effective adsorbent, chitosan (Ch) - vermiculite (V) composite material for the efficient removal of lead ions from aqueous solution was synthesized. The Ch-V composite was characterized by FT-IR SEM-EDX and PZC analyzes. The adsorbent properties of Ch-V composite for Pb2+ were evaluated in terms of pH, concentration, kinetic (time), thermodynamic (temperature) and recovery of adsorption. The experimental data obtained are derived from the relevant parameters applied to the Radushkevich isotherm models of Langmiur, Freundlich and Dubinin. The maximum adsorption capacity was found to be 0.154 mol kg-1 and the KL value was 3441 Lmol-1 . Freudlich model is a measure of adsorption capacity XF 10.3 and β surface heterogeneity is 0.537. The results showed that the experimental data fit better with the Freundlich model. The adsorption energy of Dubin Radushkevich model was found to be 9.7 kJ mol-1 , which indicates that the adsorption process is chemical. Adsorption kinetics were found to adapt to the pseudo-second model. The olduğun ΔH0 value of adsorption was found to be 5.09 kjmol-1, indicating that the adsorption is endothermic. ΔS0 was found as 69.7 Jmol-1K-1 which indicates an increase in the randomness of the biosorbent/solution interface during the adsorption process. Gibbs free energy exchange for 298.15 0C was found to be -15.7 kJ mol-1 , indicating that adsorption was spontaneous. The recovery studies showed that the ChV composite had good adsorption/desorption performance.

___

  • [1] L. Jin and R. Bai, “Mechanisms of Lead Adsorption on Chitosan/PVA Hydrogel Beads,” Langmuir, vol. 18, no. 25, pp. 9765–9770, 2002.
  • [2] F. Banat, B. Al-Bashir, S. Al-Asheh, and O. Hayajneh, “Adsorption of phenol by bentonite,” Environmental Pollution, vol. 107, no. 3, pp. 391–398, 2000.
  • [3] V. Meshko, L. Markovska, M. Mincheva, and A. Rodrigues, “Adsorption of basic dyes on granular acivated carbon and natural zeolite,” Water Research, vol. 35, no. 14, pp. 3357–3366, 2001.
  • [4] A. Sarı, D. Çıtak, and M. Tuzen, “Equilibrium, thermodynamic and kinetic studies on adsorption of Sb(III) from aqueous solution using low-cost natural diatomite,” Chemical Engineering Journal, vol. 162, no. 2, pp. 521–527, 2010.
  • [5] T. Mathialagan and T. Viraraghavan, “Adsorption of Cadmium from Aqueous Solutions by Vermiculite,” Separation Science and Technology, vol. 38, no. 1, pp. 57–76, 2003.
  • [6] A. B. Albadarin, C. Mangwandi, A. A. H. Al-Muhtaseb, G. M. Walker, S. J. Allen, and M. N. Ahmad, “Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent,” Chemical Engineering Journal, vol. 179, pp. 193–202, 2012.
  • [7] R. Schmuhl, H. Krieg, and K. Keizer, “Adsorption of Cu(II) and Cr(VI) ions by chitosan: kinetics and equilibrium studies,” Water SA, vol. 27, no. 1, 2004.
  • [8] X. Guo, S. Zhang, and X.-Q. Shan, “Adsorption of metal ions on lignin,” Journal of Hazardous Materials, vol. 151, no. 1, pp. 134–142, 2008.
  • [9] M. Oktav Bulut and U. Elibüyük. “Yengeç kitininden kitosan üretimi,” Erzincan University Journal of Science and Technology, vol. 10, no. 2, pp. 213-219, 2017.
  • [10] S. Şimşek, Z. M. Şenol, and H. I. Ulusoy, “Synthesis and characterization of a composite polymeric material including chelating agent for adsorption of uranyl ions,” Journal of Hazardous Materials, vol. 338, pp. 437– 446, 2017.
  • [11] A. Pawlak and M. Mucha, “Thermogravimetric and FTIR studies of chitosan blends,” Thermochimica Acta, vol. 396, no. 1-2, pp. 153–166, 2003.
  • [12] S. Gu, L. Wang, X. Mao, L. Yang, and C. Wang, “Selective Adsorption of Pb(II) from Aqueous Solution by Triethylenetetramine-Grafted Polyacrylamide/Vermiculite,” Materials, vol. 11, no. 4, p. 514, 2018.
  • [13] K. Foo and B. Hameed, “Insights into the modeling of adsorption isotherm systems,” Chemical Engineering Journal, vol. 156, no. 1, pp. 2–10, 2010.
  • [14] H.M.F. Freundlich. “Over the adsorption in solution.” The Journal of Physical Chemistry, vol. 57, no. 1, pp. 385–471, 1906.
  • [15] M.M. Dubinin, E.D. Zaverina, L.V. Radushkevich. “Sorption and structure of active carbons I. Adsorption of organic vapors.” Zhurnal Fizicheskoi Khimii, vol. 21, no. 1, pp. 1351–1362, 1947.
  • [16] F. Helfferich. “Ion exchange.” New York: McGraw Hill, 1962.
  • [17] S. Lagergren. “Zur theorie der sogenannten adsorption gel¨oster stoffe.” K. Sven. Vetenskapsakad. Handl, vol. 24, no. 1, pp. 1–39, 1898.
  • [18] Y. Ho and G. Mckay, “Pseudo-second order model for sorption processes,” Process Biochemistry, vol. 34, no. 5, pp. 451–465, 1999.
  • [19] Y. Ho, “The kinetics of sorption of divalent metal ions onto sphagnum moss peat,” Water Research, vol. 34, no. 3, pp. 735–742, 2000.
  • [20] Y. Ho and A. Ofomaja, “Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber,” Journal of Hazardous Materials, vol. 129, no. 1-3, pp. 137–142, 2006.
  • [21] F.-C. Wu, R.-L. Tseng, and R.-S. Juang, “Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics,” Chemical Engineering Journal, vol. 153, no. 1-3, pp. 1–8, 2009.
  • [22] R. Aravindhan, J. R. Rao, and B. U. Nair, “Removal of basic yellow dye from aqueous solution by sorption on green alga Caulerpa scalpelliformis,” Journal of Hazardous Materials, vol. 142, no. 1-2, pp. 68–76, 2007.
  • [23] A. Sarı, M. Tuzen, and M. Soylak, “Adsorption of Pb(II) and Cr(III) from aqueous solution on Celtek clay,” Journal of Hazardous Materials, vol. 144, no. 1-2, pp. 41–46, 2007.