Kırmızı Çamurdan Değerli Elementlerin Geri Kazanımına Yönelik Yapılan Araştırmaların Derlenmesi

Kırmızı çamur, boksit cevherlerinden Bayer prosesi ile alümina üretimi esnasında açığa çıkan bir atıktır. Genellikle, kırmızı çamur fabrikadan pompalanarak bir atık barajında toplanır. Ancak depolama işlemi büyük arazi kaybına yol açmakla birlikte, kırmızı çamurun yüksek bazik özelliğinden dolayı, su kaynakları ve çevre kirliliğini de beraberinde getirmektedir. Kırmızı çamuru değerlendirmek amacıyla inşaat malzemesi, cam ve seramik malzemesi, su arıtma, renklendirici ve katalizör gibi kullanımlar önerilmiştir. Fakat söz konusu kullanımlar, ekonomik olarak büyük kazanç sağlamadıkları için veya üretilen ürüne milyonlarca ton kırmızı çamuru tüketecek kadar piyasada talep olmadığı için ticari şirketler ve yatırımcılar tarafından ilgi görmemiştir. Diğer alternatif kullanım ise kırmızı çamurdan değerli elementlerin geri kazanımıdır. Kırmızı çamur kayda değer oranlarda Fe, Al ve Ti gibi endüstriyel metaller ve Sc, Ce, ve La gibi nadir toprak elementler içermektedir. Bu konuda literatürde çok sayıda araştırma yapılmıştır ve hala da yapılmaktadır. Dünyada birçok ülkede yapılan araştırmalar ile paralel olarak Türkiye’de de Seydişehir kırmızı çamurunun değerlendirmesine yönelik araştırmalar yapılmıştır. Bu makalede Dünyada ve Türkiye’de geçmişten günümüze kadar kırmızı çamurdan değerli metalleri kazanmaya yönelik yapılan araştırmalar derlenmiş ve gruplandırılmıştır.

Recovery of valuable elements from Red Mud – a review

Red mud is a waste material of the Bayer process for alumina production from bauxite ore. Red mud is generally pumped to disposal in an artificial pond. In addition to the vast area of the land occupied, red mud pollutes water resources and leads to environmental issues because of its high alkalinity. Application of red mud in construction materials, ceramic and glass industry, water purification and as coloring or catalytic agent has been proposed in the literature. However, these applications are not noticed by the companies and investors because the relatively low economic value of the products or because of their limited market which cannot respond to the huge amounts of red mud disposal. An alternative application is the recovery of valuable elements from red mud. Red mud contains appreciable amounts of industrial metals such as Fe, Al and Ti and rare earth elements like Sc, Ce and La. Extensive researches have been carried out into the topic worldwide. Parallel with the other countries worldwide, researches have also been carried out in Turkey on the utilization of Seydişehir red mud. This paper reviews and classifies the researches into the extraction of valuable elements from the red mud carried out in Turkey and worldwide.

___

  • [1] W. Liu, J. Yang and B. Xiao, “Review on treatment and utilization of bauxite residues in China,” International Journal of Mineral Processing, vol. 93, no. 3-4, pp. 220-231, 2009.
  • [2] R. K. Paramguru, P. C. Rath and V. N. Misra, “Trends in red mud utilization - a review,” Mineral Processing and Extractive Metallurgy Review: An International Journal, vol. 26, pp. 1-29, 2005.
  • [3] S. Samal, A. K. Ray and A. Bandopadhyay, “Proposal for resources, utilization and processes of red mud in India — A review,” International Journal of Mineral Processing, vol. 118, pp. 43-55, 2013.
  • [4] W. Mayes and I. Burke, “Risks, remediation and recovery: lessons for bauxite rsidue management from Ajka,” in Bauxite Residue Valorisation and Best Practices, Leuven, 2015.
  • [5] R. A. Galarraga, R. R. Carneiro, R. E. Keane and G. Nguyen, “CVG-bauxilum red mud neutralization,” in TMS Annual Meeting & Exhibition: Light Metals, Seattle, Washington, 2002.
  • [6] S. O. Brawn and D. B. Kirkpatrick, “Red mud product development,” in Light Metals, San Diego, California, 1999.
  • [7] J. Wong and G. Ho, “Use Of Waste Gypsum In The Revegetation On Red Mud Deposits: A Greenhouse Study,” Waste Management & Research, vol. 11, no. 3, pp. 249-256, 1993.
  • [8] X. Xenidis, A. D. Harokopou, E. Mylona and G. Brofas, “Modifying alumina red mud to support a revegetation cover,” JOM, vol. 57, no. 2, pp. 42-46, 2005.
  • [9] J. W. Wong and G. Ho, “Sewage sludge as organic ameliorant for revegetation of fine bauxite refining residue,” Resources, Conservation and Recycling, vol. 11, no. 1-4, pp. 297-309, 1994.
  • [10] R. Courtney, “Neutralisation, revegetation and beyond: an overview of a decade of bauxite residue research,” in Bauxite Residue Valorisation and Best Practices, Leuven, 2015.
  • [11] D. Higgins, R. Courtney, T. Curtin and L. Clune, “Use of constructed wetlands for treating BRDA leachate and run-off,” in Bauxite Residue Valorisation and Best Practices, Leuven, 2015.
  • [12] G. Dobra, L. Filipescu, N. Anghelovici, V. Alistarh and S. Iliev, “Bauxite residue safety disposal and friendly environmental processing permanent care at Vimetco Alum Sa Tulcea,” in Bauxite Residue Valorisation and Best Practices, Leuven, 2015.
  • [13] V. K. Gupta, M. Gupta and S. Sharma, “Process development for the removal of lead and chromium from aqueous solutions using red mud, an aluminium industry waste,” Wat. Res., vol. 35, no. 5, pp. 1125-1134, 2001.
  • [14] W. Huang, S. Wang, Z. Zhu, L. Li, X. Yao, V. Rudolph and F. Haghseresht, “Phosphate removal from wastewater using red mud,” Journal of Hazardous Materials, vol. 158, pp. 35-42, 2008.
  • [15] S. Wang, H. Ang and M. Tadé, “Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes,” Chemosphere, vol. 720, pp. 1621-1635, 2008.
  • [16] S. Sushil and V. S. Batra, “Catalytic applications of red mud, an aluminium industry waste: A review,” Applied Catalysis B: Environmental, vol. 81, pp. 64-77, 2008.
  • [17] J. Pera, R. Boumaza and J. Ambroise, “Development of a pozzolanic pigment from red mud,” Cement and Concrete Research, vol. 27, no. 10, pp. 1513- 1522, 1997.
  • [18] M. P. Kolesnikova, S. S. Saigofarov, E. A. Nikonenko, I. I. Kalinichenko, T. P. Kochneva and N. A. Surkova, “The use of the red mud for brick coloring,” Glass and Ceramics, vol. 55, no. 3-4, pp. 70-71, 1998.
  • [19] S. Kumar, R. Kumar and A. Bandopadhyay, “Innovative methodologies for the utilisation of wastes from metallurgical and allied industries,” Resour. Conserv. Recycl., vol. 48, pp. 301-314, 2006.
  • [20] I. Vangelatos, G. Angelopoulos and D. Boufounos, “Utilization of ferroalumina as raw material in the production of Ordinary Protland Cement,” Journal of Hazardous Materials, vol. 168, pp. 473-478, 2008.
  • [21] P. Tsakiridis, S. Agatzini-Leonardou and P. Oustadakis, “Red mud addition in the raw meal for the production of Portland cement clinker,” Journal of Hazardous Material, vol. B116, pp. 103-110, 2004.
  • [22] M. Singh, S. Upadhayay and P. Prasad, “Preparation of special cements from red mud,” Waste Management, vol. 16, no. 8, pp. 665-670, 1996.
  • [23] Z. Liang, “The research on black glass decorative materials made from red mud,” Environ. Protect. Chem. Ind., vol. 18, pp. 50-51, 1998.
  • [24] J. Yang, D. Zhang, J. Hou, B. He and B. Xiao, “Preparation of glass-ceramics from red mud in the aluminium industries,” Ceramics International, vol. 34, no. 1, pp. 125-130, 2008.
  • [25] V. M. Sglavo, S. Maurina, A. Conci, A. Salviati, G. Carturan and G. Cocco, “Bauxite ‘red mud’ in the ceramic industry. Part 2: production of clay-based ceramics,” Journal of the European Ceramic Society, vol. 20, no. 3, pp. 245-252, 2000.
  • [26] S. Pilurzu, L. Cucca, G. Tore and F. Ullu, “New research proposals for utilization and disposal of bauxite red mud from Bayer process,” in Global symposium on Recycling, Waste Treatment and Clean Technology, 1999.
  • [27] S. S. Amritphale and M. Patel, “Utilization of red mud, fly ash for manufacturing bricks with pyrophyllite,” Silicate Industries , vol. 52, no. 3-4, pp. 31-35, 1987.
  • [28] M. Kara and F. Emrullahoglu, “BCR - From Byproduct To Brick: Using Red Mud Waste as a Construction Material,” Ceramic Industry, vol. 7, pp. 13-19, 2000.
  • [29] M. Bhaskar, S. Akhtar and G. Batham, “Development of the Bricks from Red Mud by industrial waste (red mud),” International Journal of Emerging Science and Engineering, vol. 2, no. 4, pp. 7-12, 2014.
  • [30] J. Somlai, V. Jobbágy, J. Kovács, S. Tarján and T. Kovács, “Radiological aspects of the usability of red mud as building material additive,” Journal of Hazardous Materials, vol. 150, no. 3, pp. 541-545, 2008.
  • [31] Y. Liu and R. Naidu, “Hidden values in bauxite residue (red mud): Recovery of metals,” Waste Management, vol. 34, no. 12, pp. 2662-2673, 2014.
  • [32] L. Piga, F. Pochetti and L. Stoppa, “Recovering metals from red mud generated during alumina production,” JOM, vol. 45, no. 11, pp. 54-59, 1993.
  • [33] Z. Liu and H. Li, “Metallurgical process for valuable elements recovery from red mud - A review,” Hydrometallurgy, vol. 155, pp. 29-43, 2015.
  • [34] “EREAN (European Rare Earth (Magnet) Recycling Network),” 1 09 2013. [Online]. Available: http://erean.eu/project.php. [Accessed 25 10 2018].
  • [35] “Conference on European Rare Earth Resources,” 28-30 5 2017. [Online]. Available: http://eres2017.eresconference.eu/. [Accessed 25 10 2018].
  • [36] “15th International Rare Earths Conference,” 7-9 11 2018. [Online]. Available: https://metalevents.com/events/15th-international-rareearths-conference. [Accessed 25 10 2018].
  • [37] “Argus Americas Rare Earths Summit,” 12-14 6 2017. [Online]. Available: http://view.argusmedia.com/Rare-Earths-DownloadBrochure-2017.html. [Accessed 25 10 2018].
  • [38] E. Deady, E. Mouchos, K. Goodenough, B. Williamson and F. Wall, “Rare earth elements in Karstbauxites a novel untapped european resource?,” in ERES2014: 1 European Rare Earth Resources Conference, Milos, 2014.
  • [39] X.-b. Li, W. Xiao, W. Liu, G.-h. Liu, Z.-h. Peng, T.- g. Qi and Q.-s. Zhou, “Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering,” Transactions of Nonferrous Metals Society of China, vol. 19, pp. 1342-1347, 2009.
  • [40] G. Li, M. Liu, M. Rao, T. Jiang, J. Zhuang and Y. Zhang, “Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts,” Journal of Hazardous Materials, vol. 280, pp. 774-780, 2014.
  • [41] K.-h. Lim and B.-h. Shon, “Metal Components (Fe, Al, and Ti) Recovery from Red Mud by Sulfuric Acid Leaching Assisted with Ultrasonic Waves,” International Journal of Emerging Technology and Advanced Engineering, vol. 5, no. 2, pp. 25-32, 2015.
  • [42] R. Kumar, J. Srivastava and Premchand, “Utilization of iron values of red mud for metallurgical applications,” Environmental anS Waste Management, pp. 108-119, 1998.
  • [43] Y. Cengeloglu, E. Kir, M. Ersoz, T. Buyukerkek and S. Gezgin, “Recovery and concentration of metals from red mud by Donnan dialysis,” Colloids and Surfaces A: Physicochem. Eng. Aspects, vol. 223, pp. 95-101, 2003.
  • [44] R. Zhang, S. Zheng, S. Ma and Y. Zhang, “Recovery of alumina and alkali in Bayer red mud by the formation andradite-grossular hydrogarnet in hydrothermal process,” Journal of Hazardous Materials, vol. 189, pp. 827- 835, 2011.
  • [45] Abhilash, S. Sinha, M. K. Sinha and B. D. Pandey, “Extraction of lanthanum and cerium from Indian red mud,” International Journal of Mineral Processing, vol. 127, pp. 70- 73, 2014.
  • [46] C. R. Borra, Y. Pontikes, K. Binnemans and T. V. Gerven, “Leaching of rare earths from bauxite residue (red mud),” Minerals Engineering, vol. 76, no. May, pp. 20-27, 2015.
  • [47] L. V. Tsakanika, M. T. Ochsenkühn-Petropoulou and L. N. Mendrinos, “Investigation of the separation of scandium and rare earth elements from red mud by use of reversed-phase HPLC,” Analytical and Bioanalytical Chemistry, vol. 379, no. 5-6, pp. 796-802, 2004.
  • [48] M. Ochsenkühn-Petropulu, T. Lyberopulu, K. Ochsenkühn and G. Parissakis, “Recovery of lanthanides and yttrium from red mud by selective leaching,” Analytica Chimica Acta, vol. 319, no. 1-2, pp. 249-254, 1996.
  • [49] G. D. Fulford, G. Lever and T. Sato, “Recovery of rare earth elements from Bayer process red mud”. US Patent 5,030,424, 9 Jul. 1991.
  • [50] “Bauxite Residue Valorisation and Best Practices,” Leuven, 5-7 10 2015. [Online]. Available: http://conference2015.redmud.org/. [Accessed 26 10 2018].
  • [51] B. Mishra and S. Gostu, “Opportunities for high volume commercial products conversion from bauxite residue,” in Bauxite Residue Valorisation and Best Practices, Leuven, 2015.
  • [52] F. Kaussen and B. Friendrich, “Soda sintering process for the mobilisation of aluminium and gallium in red mud,” in Bauxite Residue Valorisation and Best Practices, Leuven, 2015.
  • [53] M. Samouhos, M. Taxiarchou, P. E. Tsakiridis and K. Potiriadis, “Greek red mud residue: A study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process,” Journal of Hazardous Materials, Vols. 254-255, pp. 193-205, 2013.
  • [54] D.-q. Zhu, T.-j. Chun, J. Pan and Z. He, “Recovery of Iron From High-Iron Red Mud by Reduction Roasting With Adding Sodium Salt,” Journal of iron and steel research international , vol. 19, no. 8, pp. 1-5, 2012.
  • [55] W. Liu, J. Yang and B. Xiao, “Application of Bayer red mud for iron recovery and building material production from alumosilicate residues,” Journal of Hazardous Materials, vol. 161, pp. 474-478, 2009.
  • [56] Y.-h. Guo, J.-j. Gao, H.-j. Xu, K. Zhao and X.-f. Shi, “Nuggets Production by Direct Reduction of High Iron Red Mud,” Journal of iron and steel research international, vol. 20, no. 5, pp. 24-27, 2013.
  • [57] F. Kaussen, I. A. Sofras and B. Friendrich, “Carbothermic reduction of red mud in an EAF and subsequent recovery of aluminium from the slag by pressure leaching in caustic solution,” in Bauxite Residue Valorisation and Best Practices, Leuven, 2015.
  • [58] A. Pyasi, “Value added metal extraction from red mud,” National Institute of Technology Rourkela, Thesis for the degree of Master of Technology, May 2014.
  • [59] R. Abdulvaliev, E. Tastanov, S. Gladishev, K. Beisembekova and N. Akhmadiyeva, “Wasteless processing of red mud by hydrogarnet technology,” in Bauxite Residue Valorisation and Best Practices, Leuven, 2015.
  • [60] S. Agatzini-Leonardou, P. Oustadakis, P. Tsakiridis and C. Markopoulos, “Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure,” Journal of Hazardous Materials, vol. 157, pp. 579-586, 2008.
  • [61] R. Lu, Y. Zhang, F. Zhou and X. Wang, “Research of Leaching Alumina and Iron Oxide from Bayer Red Mud,” Applied Mechanics and Materials, vol. 151, pp. 355-359, 2012.
  • [62] W. Wang, Y. Pranolo and C. Y. Cheng, “Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA,” Separation and Purification Technology, vol. 108, pp. 96-102, 2013.
  • [63] C. R. Borra, J. Mermans, B. Blanpain, Y. Pontikes, K. Binnemans and T. Van Gerven, “Selective leaching of rare earths from bauxite residue after sulphation roasting,” in Bauxite Residue Valorisation and Best Practices, Leuven, 2015.
  • [64] P. Darvis, E. Balomenos, D. Panias and İ. Paspaliaris, “The use of ionic liquids for rare earth element extraction from bauxite residue,” in Bauxite Residue Valorisation and Best Practices, Leuven, 2015.
  • [65] A. Atasoy, “The comparison of the Bayer process wastes on the base of chemical and physical properties,” Journal of Thermal Analysis and Calorimetry, vol. 90, no. 1, pp. 153-158, 2007.
  • [66] S. Arslan, H. Ucbeyiay, B. Celikel, M. Baygul, S. Avcu and G. K. Demir, “ETI aluminium red mud characteristics and evaluation of dewatering performance,” in Bauxite Residue Valorisation and Best Practices, Leuven, 2015.
  • [67] M. Kara, A. Ekerim and Ö. F. Emrullahoğlu, “Kil ilaveli kırmızı çamurun inşaat sanayisinde kullanabilirliğinin araştırılması,” in Endüstriyel Atıkların İnşaat Sektöründe Kullanımı, Ankara, 29-30 Kasım, 1995.
  • [68] S. Pişkin, A. Kantürk Figen, E. Özkan and Ü. Özçay, “Effect of Red Mud Addition on Mechanical and Physical Properties of Roof Tile,” International Journal of Chemical, Environmental & Biological Sciences (IJCEBS), vol. 1, no. 5, pp. 732-736, 2013.
  • [69] Y. Kılıç, E. Günay and M. Marşoğlu, “Atık kırmızı çamur kullanılarak üretilen renkli beton ürünlerin çevreye uyumluluk performansının incelenmesi,” Mühendislik ve Fen Bilimleri Dergisi, vol. Sigma 31, pp. 409-419, 2013.
  • [70] E. Günay, E. G. Arslan, Y. Kılıç, N. Yılmaz, M. Kara and M. Marşoğlu, “The Utilization of Waste Red Mud for Colouring of City Furnitures,” International Journal of Advances in Engineering Science and Technology, vol. 2, no. 1, pp. 29-34, 2013.
  • [71] B. Karasu, M. Çakı and E. Akgün, “Seydişehir alüminyum tesisi atığı kırmızı çamurdan üretilen pigmentlerin yer ve duvar karosu sırlarında değerlendirilmesi,” in The 2nd International Terra Cotta Symposium, Eskişehir, Turkey, September 2002.
  • [72] T. Sardohan Köseoğlu, E. Kır, S. Perçin Özkorucuklu, T. Atan, Ö. Şengül, G. Akşit and Z. Çakır, “Kompozit Membranlar Kullanılarak Kırmızı Çamurdan Metallerin Geri Kazanılması,” Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi,, vol. 16, no. 2, pp. 184-190, 2012.
  • [73] Y. Çengeloğlu, E. Kir and M. Ersöz, “Recovery and Concentration of Al(III), Fe(III), Ti(IV), and Na(I) from Red Mud,” Journal of Colloid and Interface Science, vol. 244, p. 342–346, 2001.
  • [74] N. Tınkılıç and E. Erdem, “Kırmızı çamurdan demir(II) sülfat (FeSO4 .7H2O) üretimi,” Mühendislik Bilimleri Dergisi, vol. 2, no. 2, pp. 135-137, 1996.
  • [75] E. Şayan and M. Bayramoğlu, “Statistical modeling of sulfuric acid leaching of TiO2 from red mud,” Hydrometallurgy, vol. 57, pp. 181-186, 2000.
  • [76] A. Atasoy, “Reduction of Ferric Oxides In The Red Mud by The Aluminıothermic Process,” in 6th International Advanced Technologies Symposium, Elazığ, Turkey, 16-18 May 2011.
  • [77] E. Erçağ and R. Apak, “Furnace Smelting and Extractive Metallurgy of Red Mud: Recovery of TiO2, Al2O3 and Pig Iron,” Journal of Chemical Technology and Biotechnology, vol. 70, no. 3, pp. 241-246, 1997.
  • [78] S. Dursun, D. Guclu and M. Bas, “Phosphate removal by using activated red mud from Seydisehir Aluminium Factory in Turkey,” J. Int. Environmental Application & Science, vol. 1, no. 3&4, pp. 98-106, 2006.
  • [79] Y. Çengeloğlu, E. Kır and M. Ersöz, “Removal of fluoride from aqueous solution by using red mud,” Separation and Purification Technology, vol. 28, pp. 81-86, 2002.
  • [80] E. Kalkan, H. Nadaroglu, N. Dikbaş, E. Taşgın and N. Çelebi, “Bacteria-modified red mud for adsorption of cadmium ions from aqueous solutions,” Pol. J. Environ. Stud., vol. 22, no. 2, pp. 417-429, 2013.
  • [81] İ. Akın, G. Arslan, A. Tor, M. Ersoz and Y. Cengeloglu, “Arsenic(V) removal from underground water by magnetic nanoparticles synthesized from waste red mud,” Journal of Hazardous Materials, Vols. 235-236, pp. 62-68, 2012.
  • [82] E. Kalkan, “Utilization of red mud as a stabilization material for the preparation of clay liners,” Engineering Geology, vol. 87, p. 220– 229, 2006.