Elektrik Akım Destekli Sinterleme ile Üretilen Ötektik Yapılı NiAl-34Cr ve NiAl28Cr-6Mo Alaşımlarının Yüksek Sıcaklık Korozyon Davranışı

Bu çalışmada, NiAl-34Cr ve NiAl-28Cr-6Mo ötektik alaşımları elektrik akım destekli sinterleme (ECAS) yöntemiyle 3500- 4200 A akım aralığında 47 dakika bekleme süresiyle üretilmiştir. Elde edilen numunelerin faz incelemeleri, X-ışınları difraksiyon analizi (XRD) yardımıyla gerçekleştirilmiştir. XRD paternlerinden, NiAl-34Cr alaşımının NiAl ve Cr fazları belirlenirken; NiAl-28Cr-6Mo alaşımının ise NiAl ve CrMo fazları ile birlikte düşük miktarda reaksiyona girmemiş Mo fazının varlığı tespit edilmiştir. Archimed prensibine göre yapılan yoğunluk ölçümlerinde NiAl-34Cr ve NiAl-28Cr-6Mo alaşımlarının nispi yoğunlukları sırasıyla %96.2, %97.9 ve mikrosertlik cihazında Brinell sertlik ucu kullanılarak tespit edilen sertlik değerleri sırasıyla 275 ± 13 HB ve 255 ± 20 HB olarak belirlenmiştir. Ayrıca numunelerin korozyon özellikleri 25% ağ. K2SO4 + 75% ağ. Na2SO4 tuz ortamında 800, 900 ve 1000°C’de 165 saat (15 Çevrim) sürede sıcak korozyon deneyleriyle incelenmiştir. Korozyon sonrası numunelerin süreye bağlı olarak ağırlık değişimleri, mikroyapı (SEM-EDS) ve faz analizleri gerçekleştirilmiş olup NiAl-34Cr alaşımının korozyon özelliklerinin Mo ilaveli alaşıma kıyasla daha iyi olduğu görülmüştür.

High Temperature Corrosion Behavior of Eutectic Structured NiAl-34Cr and NiAl28Cr-6Mo Alloys Produced by Electric Current Activated Sintering

In this study, NiAl-34Cr and NiAl-28Cr-6Mo eutectic alloys were produced by electric current assisted sintering (ECAS) method in a 3500-4200 A current range with a waiting time of 47 minutes. Phase examinations of the obtained samples were carried out with the help of X-ray diffraction analysis (XRD). While determining NiAl and Cr phases in NiAl-34Cr alloy from XRD patterns; It was determined that NiAl-28Cr-6Mo alloy consists of two phases, together with Mo residues, NiAl and CrMo. According to the Archimed principle, the relative density of NiAl-34Cr and NiAl-28Cr-6Mo alloys was determined as 96.2%, 97.9% respectively. The hardness values of NiAl-34Cr and NiAl-28Cr-6Mo samples were approximately 275 ± 13 HB and 255 ± 20 HB detected. In addition, the corrosion properties of the samples were examined by hot corrosion tests at 800, 900 and 1000°C for 165 hours (15 cycles) in 25% wt. K2SO4 + 75% wt. Na2SO4 salt medium. Weight changes, microstructure (SEM-EDS) and phase analysis of the samples after corrosion were carried out, and the corrosion properties of NiAl-34Cr alloy were found to be better compared to the Mo-added alloy.

___

  • [1] L. Tang, Z. Zhang, S. Li, S. Gong, “Mechanical behaviors of NiAl-Cr(Mo)-based near eutectic alloy with Ti, Hf, Nb and W additions”, Trans. Nonferrous Met. Soc. China Vol. 20, pp. 212-216, 2010.
  • [2] K. Hagihara, Y. Sugino, Y. Umakoshi, “The effect of Tiaddition on plastic deformation and fracture behavior of directionally solidified NiAl/Cr(Mo) eutectic alloys”, Intermetallics, Vol. 14, pp. 1326-1331, 2006.
  • [3] J. Guo, Z. Wang, L. Sheng, L. Zhou, C. Yuan, Z. Chen, L. Song, “Wear properties of NiAl based materials”, Progress in Natural Science: Materials International Vol. 22, no. 5, pp. 414–425, 2012.
  • [4] P.L. Ferrandini, F.L.G.U. Araujo, W.W. Batista, R. Caram, “Growth and characterization of the NiAl–NiAlNb eutectic structure”, Journal of Crystal Growth, Vol. 275, pp. 147–152, 2005.
  • [5] A. Güngör, H. Demirtaş, “Microstructure and mechanical properties of Fe-doped NiAl−28Cr−6Mo eutectic alloys”, Trans. Nonferrous Met. Soc. China, Vol. 26, pp. 1025−1031, 2016.
  • [6] D.R. Johnson, X.F. Chen, B.F. Oliver, R.D. Noebe, J. D. Whittenberger, “Processing and mechanical properties of insitu composites from the NiAlCr and the NiAl(Cr,Mo) eutectic systems” Intermetallics, Vol. 3, No 2, pp. 99–113, 1995.
  • [7] Y.X. Chen, C.Y. Cui, J.T. Guo, D.X. Li, “Microstructure investigation of NiAl–Cr(Mo) interface in a directionally solidified NiAl–Cr(Mo) eutectic alloyed with refractory metal” Materials Science and Engineering, Vol. A 373, pp. 279–285, 2004.
  • [8] D.T. Jiang, J.T. Guo, ”Preliminary investigation of in-situ multi-phase composite NiAl-CrMo/ TiC”, Materials Letters, Vol. 36, pp. 33–37, 1998.
  • [9] A. Albiter, M. Salazar, E. Bedolla, R.A.L. Drew, R. Perez, “Improvement of the mechanical properties in a nanocrystalline NiAl intermetallic alloy with Fe, Ga and Mo additions”, Materials Science and Engineering, Vol. A. 347(1–2), pp. 154–164, 2003.
  • [10] Y. Liang, J. Guo, Y. Xie, L. Zhou, Z. Hu, “High temperature compressive properties and room temperature fracture toughness of directionally solidified NiAl-based eutectic alloy” Materials and Design, Vol. 30, No. 6, pp. 2181–2185, 2009.
  • [11] K. Morsi, “Review; reaction synthesis processing of Ni– Al intermetallic materials”, Vol. 299, pp. 1–15, 2001.
  • [12] J.F. Zhang, J. Shen, Z. Shang, L. Wang, H.Z. Fu, “Directional solidification and characterization of NiAl-9Mo eutectic alloy”, Transactions of Nonferrous Metals Society of China (English Edition), Vol. 23, No. 12, pp. 3499–3507, 2013.
  • [13] L. Wang, J. Shen, Z. Shang, H. Fu, “Microstructure evolution and enhancement of fracture toughness of NiAl– Cr(Mo)–(Hf,Dy) alloy with a small addition of Fe during heat treatment”, Scripta Materialia, Vol 89, pp. 1–4, 2014.
  • [14] L.Y. Sheng , J.T. Guo , H.Q. Ye, “Microstructure and mechanical properties of NiAl–Cr(Mo)/Nb eutectic alloy prepared by injection-casting”, Materials and Design, Vol. 30, pp. 964–969, 2009.
  • [15] Garip Yiğit, “Elektrik Akım Destekli Sinterleme Yöntemiyle Üretilen Ti-48Al Esaslı İntermetaliklere Alaşım Elementi İlavesinin Oksidasyon ve Sıcak Korozyon Davranışına Etkisinin İncelenmesi”, Doctoral thesis, Sakarya University of Applied Science, Graduate Education Institute Sakarya, 2019.
  • [16] Çeper Cihan, “NiAl-34Cr-X (Fe, Nb, Ti) alaşımının elektrik akım destekli sinterleme (ECAS) yöntemiyle üretimi ve karakterizasyonu”, Master thesis, Sakarya University Institute of Natural Sciences, Sakarya, 2019.
  • [17] C. Leyens, B.A. Pint, I.G. Wright, “Effect of composition on the oxidation and hot corrosion resistance of NiAl doped with precious metals”, Surface and Coatings Technology, Vol. 133-134, pp 15-22, 2000.
  • [18] M.N. Task, M. Gleeson, F.S. Pettit, G.H. Meier, ”Compositional effects on the Type I hot corrosion of β-NiAl alloys”, Surface & Coatings Technology, Vol. 206, pp. 1552–1557, 2011
  • [19] M. Kellner, L. Sprenger, P. Steinmetz, J. Hötzer, B. Nestler, M. Heilmaier, “Phase-field simulation of the microstructure evolution in the eutectic NiAl-34Cr system. Computational Materials Science”, Vol. 128, pp. 379–387, 2017.
  • [20] B. Tang, D.A. Cogswell, G. Xu, S. Milenkovic, Y. Cui, “The formation mechanism of eutectic microstructures in NiAl-Cr composites”, Physical Chemistry Chemical Physics, Vol. 18, No 29, pp. 19773–19786, 2016.
  • [21]A. Misra, R. Gibala, “Plasticity in multiphase intermetallics”, Intermetallics, Vol. 8, pp. 1025-1034, 2000.
  • [22] J.M. Yang, S.M. Jeng, K. Bain, R.A. Amato, “Microstructure and mechanical behaviour of in-situ directional solidified NiAl/Cr(Mo)”, Acta Materialia, Vol. 45, pp. 295-308, 1997.
  • [23] Z. Shang, J. Shen, L. Wang, Y. Du, Y. Xiong, H. Fu, “Investigations on the microstructure and room temperature fracture toughness of directionally solidified NiAl-Cr(Mo) eutectic alloy”, Intermetallics, Vol. 57, pp. 25-33, 2015.
  • [24] G.K. Dey, B. Atomic, “Physical Metallurgy of Nickel Aluminides”, Sadhana, Vol. 28, pp. 247-262, 2003.
  • [25] Y.D Liu, J. Sun, Z.L. Pei, W. Li, J.H. Liu, J. Gong, J.Sun, “Oxidation and hot corrosion behavior of NiCrAlYSi+NiAl/cBN abrasive coating”, Corrosion Science, 2020.
  • [26] Z. Tang, F. Wang, W. Wu, “Effect of a sputtered TiAlCr coating on hot corrosion resistance of gamma-TiAl”, Intermetallics, Vol. 7, pp. 1271-1274, 1999.
ACADEMIC PLATFORM-JOURNAL OF ENGINEERING AND SCIENCE-Cover
  • ISSN: 2147-4575
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2013
  • Yayıncı: Akademik Perspektif Derneği
Sayıdaki Diğer Makaleler

Design of an Android Wear Smartwatch Application as a Wearable Interface to the Diabetes Diary Application

Ömer PEKTAŞ, Murat KÖSEOĞLU, Miroslav MUZNY, Gunnar HARTVİGSEN, Eirik RSAND

Döküm Sanayinde Süreç Tabanlı Temel Gösterimleri ile İstatistiksel Süreç Kontrolü

Kenan ORÇANLI

Arayüzey Polimerizasyonu Metodu ile İnce Boşluklu Nanofiltrasyon (NF) Membran Üretimi ve Performans Değerlendirmesi

Esra Ateş GENCELİ, Gülsüm Melike Ürper BAYRAM, Reyhan ŞENGÜR TAŞDEMİR, Türker TÜRKEN, İSMAİL KOYUNCU

Tongue-Operated Biosignal over EEG and Processing with Decision Tree and kNN

Kutlucan GORUR, MEHMET RECEP BOZKURT, Muhammet Serdar BAŞÇIL, Feyzullah TEMURTAŞ

Çarpık Dağılımlar için Çarpıklık Düzeltmesi Yöntemine Dayalı X ve R Kontrol Grafikleri

Sevgi YURT ÖNCEL, Handan ÖZARSLAN

Fotometrik Flicker Olayının İnsana Etkileri ve Bunların Tıbbi Olmayan Tespit Yöntemleri

Cenk YAVUZ, Ceyda AKSOY TIRMIKÇI

Türkiye’de İş Kazaları ve Makroekonomik Faktörlerin İlişkisi: Zaman Serisi Analizi

Tufan ÖZTÜRK, Özge EREN, HASAN VOLKAN ORAL

Fitalimid İşlevsel Gruplar Taşıyan Yeni Bir Simetrik Benzimidazol Tuzunun Sentezi, Yapısal ve Spektroskopik Özelliklerinin Araştırılması

Ahmet KUNDURACIOĞLU

EPS İle İkame Edilmiş Uçucu Küllü Geopolimer Hafif Harcın Fiziksel, Mekanik ve Isıl Geçirimlilik Özelliklerinin İncelenmesi

Serhan İLKENTAPAR, Halil EREN

Çelik Kolon Taban Levhalarının Mekanik Davranışlarının İncelenmesi

Şahin SÖZEN, Mustafa ATILGAN