Design of an Android Wear Smartwatch Application as a Wearable Interface to the Diabetes Diary Application

In this study, an application was developed for Android-based smartwatches which has the capacity of monitoring the state of diabetes mellitus and indicating the data concerning the physical activities and cardiac rhythm. Android Studio was used to develop and design the application. The application consists of five pages (glucose, insulin, carbohydrate, physical activity, and heart rate) and a watch face. The Dexcom G4 Platinum sensor was used to provide the user’s continuous glucose data. The application not only provides monitoring but also allows the users to enter data entry from the pages. Thus, it is possible to use it as a diary by people with diabetes. The development process of the application was done in collaboration with the Norwegian Centre for e-Health Research in Tromsø, Norway. Also, the application operates simultaneously with an Android phone application called Diabetes Diary, which is developed by this research center.

___

[1]. Ü. Özdemir, S. Taşcı. J. Erciyes Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, "Kronik Hastaliklarda Psikososyal Sorunlar ve Bakim," vol. 1, no. 1, pp. 57-72, 2013.

[2]. C. Chen, X.-L. Zhao, Z.-H. Li, Z.-G. Zhu, S.-H. Qian, and A. J. S. Flewitt, "Current and emerging technology for continuous glucose monitoring," vol. 17, no. 1, p. 182, 2017.

[3]. Rghioui, Amine, et al. Electronics, "A Smart GlucoseMonitoring System for Diabetic Patient." 9.4 (2020): 678.

[4]. Diyabet, URL: https://hsgm.saglik.gov.tr/tr/diyabet (Accessed on 12 September 2019)

[5]. Masoud, Baghelani, et al. Scientific Reports (Nature Publisher Group) "Non-invasive continuous-time glucose monitoring system using a chipless printable sensor based on split ring microwave resonators." 10.1 (2020).

[6]. Shah, Rajiv, et al. "Multi-analyte continuous glucose monitoring." U.S. Patent Application No. 16/273,920.

[7]. Kim, Jae Hyun. "Current status of continuous glucose monitoring among Korean children and adolescents with type 1 diabetes." Journal of Korean Society of Pediatric Endocrinology (2020).

[8]. M. Koseoglu and O. Pektas, "Smart and Wearable Technologies in Continuous Glucose Monitoring," presented at the International Engineering and Natural Science Conference (IENSC 2018), November 2018, 2018.

[9]. J. Helbostad et al., "Mobile health applications to promote active and healthy ageing," vol. 17, no. 3, p. 622, 2017.

[10]. S. H.-W. Chuah, P. A. Rauschnabel, N. Krey, B. Nguyen, T. Ramayah, and S. J. C. i. H. B. Lade, "Wearable technologies: The role of usefulness and visibility in smartwatch adoption," vol. 65, pp. 276-284, 2016.

[11]. Mück, Julia E., et al. Trends in biotechnology, "Market and patent analyses of wearables in medicine." 37.6 (2019): 563-566.

[12]. Ö. Pektas, M. Muzny, E. Årsand, G. Hartvigsen, M. Koseoglu, "Utilizing the New Gerenration of Wearable Devices in a Combined Diabetes Diary Application," presented at the The innovative 11th International Conference on Advanced Technologies & Treatments for Diabetes, Vienna,, Austria, 14-17 Februrary, 2018.

[13]. E. I. Georga, V. C. Protopappas, C. V. Bellos, D. I. J. H. Fotiadis, and Technology, "Wearable systems and mobile applications for diabetes disease management," vol. 4, no. 2, pp. 101-112, 2014.

[14]. T. Szydło, M. J. M. Konieczny, and Microsystems, "Mobile and wearable devices in an open and universal system for remote patient monitoring," vol. 46, pp. 44-54, 2016.

[15]. Diabetes Diary, URL: http://www.diabetesdagboka.no/en/

[16]. S. Silbert. (2019). What is a Smartwatch?, URL: https://www.lifewire.com/an-introduction-to-smartwatches-3441381.

[17]. Huawei Smartwatch 2, URL: https://consumer.huawei.com/tr/wearables/watch2/.

[18]. J. Šoupal et al., "Comparison of different treatment modalities for type 1 diabetes, including sensor-augmented insulin regimens, in 52 weeks of follow-up: a COMISAIR study," vol. 18, no. 9, pp. 532-538, 2016.

[19]. Dexcom, URL: https://www.dexcom.com/tr-TR.

[20]. xDrip Hardware Setup, URL: https://github.com/StephenBlackWasAlreadyTaken/xDrip/b lob/gh-pages/hardware_setup.md.

[21]. D. Beckman, C.M. Reehorst, A. Henriksen, M. Muzny, E. Årsand, G. Hartvigsen. International Journal of Integrated Care. "Better glucose regulation through enabling groupbased motivational mechanisms in cloud-based solutions like Nightscout." 16(5):S4, 2016. dx.doi.org/10.5334/ijic.2548.

[22]. W. Jackson, Pro android wearables: Building apps for smartwatches. Apress, 2015.

[23]. E. Årsand, M. Muzny, M. Bradway, J. Muzik, G. Hartvigsen. Journal of Diabetes Science and Technology, "Performance of the first combined smartwatch andsmartphone diabetes diary application study," vol. 9, no. 3,pp. 556-563, 2015.

[24]. Diabetes:M, URL: https://sites.google.com/view/diabetes-muserguide/android-wear.

[25]. Balansio, URL: https://www.balansio.com.
ACADEMIC PLATFORM-JOURNAL OF ENGINEERING AND SCIENCE-Cover
  • ISSN: 2147-4575
  • Yayın Aralığı: 3
  • Başlangıç: 2013
  • Yayıncı: Akademik Perspektif Derneği
Sayıdaki Diğer Makaleler

Fotometrik Flicker Olayının İnsana Etkileri ve Bunların Tıbbi Olmayan Tespit Yöntemleri

Cenk YAVUZ, Ceyda AKSOY TIRMIKÇI

Hiperspektral Görüntülerin Sınıflandırılmasında Farklı Boyut İndirgeme Yöntemlerinin Karşılaştırılması

Mehmet Zahid YILDIRIM, CANER ÖZCAN, Okan ERSOY

Döküm Sanayinde Süreç Tabanlı Temel Gösterimleri ile İstatistiksel Süreç Kontrolü

Kenan ORÇANLI

EPS İle İkame Edilmiş Uçucu Küllü Geopolimer Hafif Harcın Fiziksel, Mekanik ve Isıl Geçirimlilik Özelliklerinin İncelenmesi

Serhan İLKENTAPAR, Halil EREN

Çelik Kolon Taban Levhalarının Mekanik Davranışlarının İncelenmesi

Şahin SÖZEN, Mustafa ATILGAN

Elektrik Akım Destekli Sinterleme ile Üretilen Ötektik Yapılı NiAl-34Cr ve NiAl28Cr-6Mo Alaşımlarının Yüksek Sıcaklık Korozyon Davranışı

Cihan ÇEPER, Nuri ERGİN, Özkan ÖZDEMİR

İstanbul Boğazı’nda Transit Geçiş Yapan Gemilerin Egzoz Gazı Emisyonlarının İncelenmesi

Aydin TOKUŞLU, Selmin BURAK

İvmeölçer ve Nesnelerin İnterneti Tabanlı Gerçek Zamanlı İnsan Aktivite Tespiti

KENAN ERİN, Cüneyt BAYILMIŞ, Barış BORU

An Expert System to Predict Eye Disorder Using Deep Convolutional Neural Network

Moahmmed Rashid AHMED, ADİL DENİZ DURU, Osman Nuri UÇAN, Oğuz BAYAT

Extending Wireless Sensor Networks’ Lifetimes Using Deep Reinforcement Learning in a Software-Defined Network Architecture

Zainab Ali ABBOOD, Mahmoud Shukr MAHMOUD, Çağatay AYDIN, Doğu Çağdaş ATİLLA, Bassem G. AL-SAADİ