Arayüzey Polimerizasyonu Metodu ile İnce Boşluklu Nanofiltrasyon (NF) Membran Üretimi ve Performans Değerlendirmesi

İnce boşluklu (hollow fiber (HF)) ultrafiltrasyon (UF) membranların dış yüzeyi, arayüzey polimerizasyon metodu ile ince film kaplanarak, nanofiltrasyon (NF) membranlar üretilmiştir. Farklı monomerlerin ve bekletme sürelerinin membran performansı üzerindeki etkilerinin belirlenebilmesi için üretimde iki farklı monomer, (m-fenilen diamin (MPD) ve piperazin (PIP)) kullanılmış ve açil klorid monomeri için (trimezoil klorid (TMC)) farklı temas süreleri (2 dk, 1 dk ve 30 sn) uygulanmıştır. Üretilen membranların karakteristiği ve performansları SEM görüntüleri, saf su geçirgenlikleri, temas açısı, yüzey pürüzlülüğü, tuz tutunumu (MgSO4 ve NaCl) ve akı verileri incelenerek değerlendirilmiştir. Membranların SEM görüntüleri, tüm üretim koşullarında ince film tabakasının oluştuğunu göstermiştir. Yüzey pürüzlülüğü üzerinde MPD monomerinin, PIP monomerine göre daha etkili olduğu belirlenmiştir. En iyi geçirgenlik değeri TMC için uygulanan bekletme sürelerine bağlı olarak farklılık (PIP için TMC (2 dk), MPD için TMC (1 dk)) göstermiştir. Farklı amin monomerler kullanılarak üretilen membranlar dört farklı basınç altında (3, 6, 9, 12 bar) işletilmiştir. PIP monomeri ile üretilen membranlarda daha yüksek tuz akıları ve giderim verimleri elde edilmiştir. % 50 ve üzerinde MgSO4 giderimi, % 2 PIP, % 0.13 TMC (2 dk ve 1 dk), ve % 2 MPD, % 0.13 TMC (2 dk ve 30 sn) olan membranlarda izlenmiştir. NaCl gideriminde ise en yüksek verim (% 39.6), % 2 MPD, % 0.13 TMC (30 sn) ile üretilen membranlarda elde edilmiştir. Bulgulara göre giderilecek tuz cinsine bağlı olarak uygulanacak NF membranın farklılık gösterdiği sonucuna varılmıştır.

Fabrication of Hollow Fiber Nanofiltration Membrane by Interfacial Polymerization Method and Performance Evaluation

The outer surfaces of the hollow fiber (HF) ultrafiltration (UF) membranes were coated by the interface polymerization method and nanofiltration (NF) membranes were produced. For the determination of different monomers and contact time effects on the membrane performance, two different monomers, (m-phenylene diamine (MPD) and piperazine (PIP)) and different contact time (2 min, 1 min and 30 sec) to the acyl chloride monomer (trimezoyl chloride (TMC)) were applied in the fabrication of membrane. The characterization and performance evaluation of the produced membranes were investigated with SEM images, pure water permeability, contact angle, surface roughness, salt retention (MgSO4 and NaCl) and flux data. SEM images of the membranes showed that a thin film layer formed in all production conditions. It was determined that MPD monomer is more effective than PIP monomer on surface roughness. The best permeability value showed variation depending on the applied contact time for TMC. Produced membranes by using different amine monomers were operated under four different pressures (3, 6, 9, 12 bar). Higher salt fluxes and removal efficiencies for MgSO4 were obtained in membranes produced with PIP. 50% and above of MgSO4 removal was observed in membranes with 2% PIP, 0.13% TMC (2 min and 1 min), and 2% MPD, 0.13% TMC (2 min and 30 sec). The highest NaCl removal efficiency (39.6%) was obtained in membranes produced with 2% MPD, 0.13% TMC (30 sec). According to the findings, it was concluded that the NF membrane to be applied differs depending on the type of salt to be removed.

___

  • [1] L. P. Raman, M. Cheryan, and N. Rajagopalan, “Consider nanofiltration for membrane separations”, Chem. Eng. Prog., vol 90, no 3, pp 68-74 Mar. 1974.
  • [2] M. Dalwani, “Thin film composite nanofiltration membranes for extreme conditions”, Doktora Tezi, University of Twente, Netherlands, pp 160, Nov. 2011.
  • [3] P.W. Morgan, “Condensation polymers: By interfacial and solution methods”, Interscience, John Wiley & Sons, New York London, 1965.
  • [4] J.E. Cadotte, K.E. Cobian, R.H. Forester, R.J.Petersen, “Continued evaluation of in-situ-formed condensation polymers for reverse osmosis membranes”, NTIS Report No. PB-253193, pp 90, Apr. 1976.
  • [5] J.E. Cadotte, M.J. Steuck, R.J. Petersen, “Research on insitu-formed condensation polymers for reverse osmosis membranes”, NTIS Report No. PB- 288387, Mar. 1978.
  • [6] W.J. Lau and A.F. Ismail “Progress in interfacial polymerization technique on composite membrane preparation”, 2nd International Conference on Environmental Engineering and Applications IPCBEE Singapore, vol.17, pp 173-177, 2011.
  • [7] K.P. Lee, T.C. Arnot, D. Mattia, “A review of reverse osmosis membrane materials for desalination— Development to date and future potential”, J. Membr. Sci., vol 370, no 1-2, pp 1-22, Mar. 2011.
  • [8] D. Li, and H. Wang, “Recent development in reverse osmosis desalination membranes”, J.Mater. Chem., no 20, pp 4551–4566, 2010.
  • [9] W.J. Lau, A.F. Ismail, N. Misdan, M.A. Kassim, “A recent progress in thin film composite membrane: A review”. Desalination vol 287, pp 190–199, Feb. 2012..
  • [10] A.W. Mohammad, N. Hilal, and M.N.A. Seman, “Interfacially polymerized nanofiltration membranes: atomic force microscopy and salts rejection studies”, J. App. Poly. Sci., vol. 96, pp 605–612, 2005.
  • [11] B.-H. Jeong, E.M.V. Hoek, Y. Yan, A. Subramani, X. Huang, G. Hurwitz, A.K. Ghosh, A. Jawor, “Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes”, J. Membr. Sci., vol 294, no 1-2, pp 1–7, May 2007.
  • [12] W.J. Lau, and A.F. Ismail, “Polymeric nanofiltration membrane for textile dyeing wastewater treatment: preparation, performance evaluation, transport modelling, and fouling controls — a review”, Desalination, vol 245, no 1-3, pp 321–348, Sep. 2009.
  • [13] C. Kong, M. Kanezashi, T. Yamomoto, T. Shintani, T. Tsuru, “Controlled synthesis of high performance polyamide membrane with thin dense layer for water desalination”, J. Membr. Sci., vol. 362,no 1-2, pp 76–80, Oct. 2010.
  • [14] J. E. Tomaschke, “Interfacial Composite Membranes’’, Hydranautics Oceanside, CA, USA, Academic Press, 2000.
  • [15] W. Xie, M. G. Geoffrey, B. D. Freeman, H. S. Lee, G. Byun, J. E. McGrath, “Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine”, J. Membr. Sci., vol 403– 404, pp 152–161, Jun. 2012.
  • [16] F.T. Minhas, S. Memon, M.I. Bhanger, N. Iqbal, M. Mujahid, ”Solvent resistant thin film composite nanofiltration membrane:Characterization and permeation study”, Appl. Surf. Sci., vol 282, pp 887–897, Oct. 2013.
  • [17] H.S. Lee, S.J. Im, J.H. Kim, H.J. Kim, J.P. Kim, B.R. Min, “Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles”, Desalination, vol 219, no 1- 3, pp 48–56, Jan. 2008.
  • [18] H. Wang, Q. Zhang, S. Zhang, “Positively charged nanofiltration membrane formed by interfacial polymerization of 3,3’5,5’-biphenyl tetraacyl chloride and piperazine on a poly(acrylonitrile) (PAN) support”, J. Membr. Sci., vol 378, no 1-2, pp 243– 249, Aug 2011.
  • [19] S. Veríssimo, K. V. Peinemann, J. Bordado, “Thin-film composite hollow fiber membranes: An optimized manufacturing method”, J. Membr. Sci., vol 264, no 1-2, pp 48–55, Nov. 2005.
  • [20] A.P. Korikov, P.B. Kosaraju, K.K. Sirkar, “Interfacially polymerized hydrophilic microporous thin film composite membranes on porous polypropylene hollow fibres and flat films”, J. Membr. Sci., vol 279, no 1-2, pp 588–600, Aug. 2006.
  • [21] F. Yang, S. Zhang, D. Yang, X. Jian, “Preparation and characterization of polypiperazine amide/PPESK hollow fiber composite nanofiltration membrane”, J. Membr. Sci., vol, 301, no 1-2, pp 85–92, Sep. 2007.
  • [22] S. Chou, L. Shi, R. Wang, C.Y. Tang, C. Qiu, A.G. Fane, “Characteristics and potentialapplications of a novel forward osmosis hollow fiber membrane”, Desalination, vol 261, no 3pp 365–372, Oct. 2010.
  • [23] S. Veríssimo, K.V. Peinemann, J. Bordado, “New composite hollow fiber membrane for nanofiltration”, Desalination, vol 184, no 1-3, pp 1–11, Nov. 2005.
  • [24] S.E. Tadros, and Y.M. Trehu, “Coating process for composite reverse osmosis membranes”, U.S. Patent No 4980061, 1990.
  • [25] A. Kumano, H. Ogura, T. Hayashi, “Composite hollow fiber membrane and process for its production”, U.S. Patent No 5783079, 1998.
  • [26] R Sengur-Tasdemir, G.M. Urper, T. Turken, E.A. Genceli, V.V. Tarabara, and I. Koyuncu, “Combined effects of hollow fiber fabrication conditions and casting mixture composition on the properties of polysulfone ultrafiltration membranes”, Sep. Sci. & Technol., vol 51, no 12, pp 2070- 2079, Jun 2016.
  • [27] E.A. Genceli, R. Sengur-Tasdemir, G.M. Urper, S. Gumrukcu, Z. Guler-Gokce, U. Dagli, T. Turken, A.S. Sarac, and I. Koyuncu, “Effects of carboxylated multi-walled carbon nanotubes having different outer diameters on hollow fiber ultrafiltration membrane fabrication and characterization by electrochemical impedance spectroscopy” Polym. Bull. vol 75, pp 2431–2457, Aug. 2017.
  • [28] R. Şengür, “Fabrication and characterization of polyethersulfone (PES)/multiwalled carbon nanotube hollow fiber ultrafiltration membranes”, İstanbul Teknik Üniversitesi Yüksek Lisans Tezi, pp 101, 2013. İstanbul,
  • [29] A. Mollahosseini, and A. Rahimpour, “Interfacially polymerized thin film nanofiltration membranes on TiO2 coated polysulfone substrate,”, J. Ind. & Eng. Chem., vol. 20, no 4, pp 1261–1268, July 2014.
  • [30] Z.L. Cheng, X. Li, Y. Da. Liu, T.S. Chung, “Robust outer-selective thin-film composite polyethersulfone hollow fiber membranes with low reverse salt flux for renewable salinity-gradient energy generation”, J. Membr. Sci., vol. 506, pp 119–129, May 2016..
  • [31] M.B.M.Y. Ang, Y.L. Ji, S.H. Huang, H.A. Tsai, W.S. Hung, C.C. Hu, K.R. Lee, J.Y. Lai, “Incorporation of carboxylic monoamines into thin-film composite polyamide membranes to enhance nanofiltration performance”, J. Membr. Sci., vol 539, pp 52–64, Oct. 2017..
  • [32] M. Safarpour, V. Vatanpour, A. Khataee, M. Esmaeili, “Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO2”, Sep. Purif. Technol.. vol 154, pp 96–107, Nov. 2015..
  • [33] G.M. Urper-Bayram, B. Sayinli, N. Bossa, E. Ngaboyamahina, R. Sengur-Tasdemir, E. Ates-Genceli, M. Wiesner, I. Koyuncu, “Thin film nanocomposite nanofiltration hollow fiber membrane fabrication and characterization by electrochemical impedance spectroscopy”, Polym. Bull. vol 77, pp 3411–3427, Aug. 2019.
  • [34] T. Turken, R. Sengur-Tasdemir, B. Sayinli, G.M. UrperBayram, E. Ates-Genceli, V. V. Tarabara, I. Koyuncu, “Reinforced thin-film composite nanofiltration membranes: Fabrication, characterization, and performance testing”, J. Appl. Poly. Sci., vol 136, pp 1–9, Jun 2019.
  • [35] V. Freger, “Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization”, Langmuir, vol 19, no 11, pp 4791–4797, Apr. 2003.
  • [36] S. Verissimo, K.-V. Peinemann, J. Bordado, “Influence of the diamine structure on the nanofiltration performance, surface morphology and surface charge of the composite polyamide membranes”, J. Membr. Sci., vol 279, no 1, pp 266–275, 2006.
  • [37] A.E. Childress, M. Elimelech, “Relating nanofiltration membrane performance to membrane charge electrokinetic) characteristics”, Environ. Sci. Technol., vol 34, no 17, pp 3710–3716, July 2000.
  • [38] A. Tuteja, W. Choi, M. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G.H. McKinley, R.E. Cohen, “Designing superoleophobic surfaces”, Science, vol 318, no 5856, pp 1618–1622, Dec. 2007.
  • [39] B. Peng, L. Tan, D. Chen, X. Meng, F. Tang, “Programming surface morphology of TiO2 hollow spheres and their superhydrophilic films”, ACS Appl. Mater. Interfaces, vol 4, no 1, pp 96–101, Dec. 2011.
  • [40] A.H.M. El-Aassar, “Polyamide thin film composite membranes using interfacial polymerization: synthesis, characterization and reverse osmosis performance for water desalination”, Australian J. Basic and Appl. Sci., vol 6, no 6, pp 382–391, Jun. 2012.
  • [41] A.W. Mohammad, Y.H. Teow, W.L. Ang, Y.T. Chung, D.L. Oatley-Radcliffe, N. Hilal, “Nanofiltration membranes review: Recent advances and future prospects”, Desalination, vol 356, pp 226–254, Jan. 2015.
  • [42] P.G. Ingole, W. Choi, K.-H. Kim, H.-D. Jo, W.-K. Choi, J.-S. Park, H.-K. Lee, “Preparation, characterization and performance evaluations of thin film composite hollow fiber membrane for energy generation”, Desalination, vol 345, pp 136–145, July 2014.
  • [43] W. Fang, L. Shi, R. Wang, “Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability”, J. Membr. Sci., vol 468, pp 52–61. Oct 2014.
ACADEMIC PLATFORM-JOURNAL OF ENGINEERING AND SCIENCE-Cover
  • ISSN: 2147-4575
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2013
  • Yayıncı: Akademik Perspektif Derneği