Döner (Spin) Kaplama ile İki Boyutlu Polimerik Nanokompozitlerin Geniş Alanlı Üretimleri

Bu çalışmanın amacı, döner-kaplama tekniği kullanılarak yüksek kristal kalite kolloidal şablonların eldesi ve bu şablonlardan üretilen nanokompozitlerin üretim koşullarının belirlenmesidir. Bu amaçla, hazırlanan akrilat monomeri içerisine homojen dağılmış silika kolloidleri kullanarak çeşitli yüzeyler üzerine döner kaplama tekniği ile cam yüzeyler kaplandı. Merkez kaç kuvvetlerine dayalı bu kaplama tekniği ile yüksek kaliteli nanodizilimler ve polimerizasyon aşamasıyla, iki boyutda kolloidal kristallerin polimer yapıları başarılı bir şekilde hazırlandı. Etanolde, seyreltik silika nanoküreler temizlendikten sonra viskozitesi 60 cps olan etoksile trimetilolpropan triakrilat monomer ile hacimsel fraksiyonları < %20 olacak şekilde çözüldü. Hazırlanan bu kolloidal süspansiyon-monomer karışımı cam yüzeyler üzerine oldukça tek dizilimli olarak kaplandı. Filmin kalınlığı sadece dönüş hızı ve dönüş zamanı değiştirilerek kontrol edilebilmektedir. Polimer matrisinin ve silis kürelerinin seçici olarak uzaklaştırılması, reaktif iyon aşındırıcı ve hidroflorik asit uygulamalarıyla gerçekleştirilmiş olup, sırasıyla geniş alanlı kolloidal kristallerin makro gözenekli polimer şablonları elde edildi. Görünür ve yakın kızılötesi bölgelerdeki normal iletim spektrumları, iki boyutlu bu nanoyapılardan, Bragg kırınımın belirgin tepe noktaları grafiklerle belirlendi. Optik disk ölçekli kaplama işlemlerine dayalı bu teknik, standart yarı iletken mikrofabrikasyonlara ve optik biyosensör üretimine uyumludur. Döner kaplama işleminin, merkez kaç kuvvetine dayalı kristalleşme uygulaması, kaplama tekniklerine dayalı, teknolojik uygulamalarda rahatlıkla kullanılabilmektedir.

Mass Fabrication of Two Dimensional Polymeric Nanocomposites with Spin Coating

The aim of this study is to obtain high crystal quality colloidal templates using spin-coating technique and to determine the production conditions of nanocomposites produced from these templates. For this purpose, the glass surfaces were coated by spin- coating technique on various surfaces using homogeneously dispersed silica colloids in the prepared acrylate monomer. With this coating technique based on centrifugal forces, and following polymerization step, high quality nanoarrays of colloidal crystals in two dimensions were successfully prepared. In ethanol, the dilute silica nanospheres were removed and then dissolved with ethoxylated trimethylolpropane triacrylate monomer having a viscosity of 60 cps to

___

  • [1] J. F. Bertone, P. Jiang, K. S. Hwang, D. M. Mittleman, and V. L. Colvin, "Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals," Physical Review Letters, vol. 83, no. 2, pp. 300-303, Jul 12 1999.
  • [2] J. H. Kim, S. H. Kang, K. Zhu, J. Y. Kim, N. R. Neale, and A. J. Frank, "Ni-NiO core-shell inverse opal electrodes for supercapacitors," Chemical Communications, vol. 47, no. 18, pp. 5214-5216, 2011.
  • [3] A. K. Samusev, K. B. Samusev, and M. V. Rybin, "Two-dimensional light diffraction from thin opal films," Physics of the Solid State, vol. 53, no. 5, pp. 1056-1061, 2011// 2011.
  • [4] H. Xing, J. Li, J. Guo, and J. Wei, "Bio-inspired thermal-responsive inverse opal films with dual structural colors based on liquid crystal elastomer," Journal of Materials Chemistry C, vol. 3, no. 17, pp. 4424-4430, 2015 2015.
  • [5] F. Malet, M. Pi, M. Barranco, E. Lipparini, and L. Serra, "Optical response of two-dimensional few-electron concentric double quantum rings: A local-spin-densityfunctional theory study," Physical Review B, vol. 74, no. 19, Nov 2006.
  • [6] S. Middleman, "The effect of induced air-flow on the spin coating of viscous liquids," vol. 62, ed: Journal of Applied Physics, 1987.
  • [7] Y. Ren and A. O. Adeyeye, "Magnetic spin states and vortex stability control in elongated Ni(80)Fe(20) nanorings," Journal of Applied Physics, vol. 105, no. 6, Mar 2009.
  • [8] P. Jiang and M. J. McFarland, "Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating," Journal of the American Chemical Society, vol. 126, no. 42, pp. 13778- 13786, Oct 27 2004.
  • [9] C. A. F. Vaz et al., "Ferromagnetic nanorings," Journal of Physics-Condensed Matter, vol. 19, no. 25, Jun 2007.
  • [10] J. Wang, K. Deshpande, and G. B. McKenna, "Determination of the Shear Modulus of Spin-Coated Lipid Multibilayer Films by the Spontaneous Embedment of Submicrometer-Sized Particles," Langmuir, vol. 27, no. 11, pp. 6846-6854, Jun 7 2011.
  • [11] T. Yang, A. Hirohata, M. Hara, T. Kimura, and Y. Otani, "Current-induced vortex-vortex switching in a nanopillar comprising two Co nano-rings," Applied Physics Letters, vol. 90, no. 9, Feb 2007.
  • [12] K. Askar, B. M. Phillips, and Y. Fang, "Selfassembled self-cleaning broadband anti-reflection coatings," Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 439, pp. 84-100, Dec 2013.
  • [13] T. Yang, A. Hirohata, L. Vila, T. Kimura, and Y. Otani, "Vertical stack of Co nanorings with currentperpendicular-to-plane giant magnetoresistance: Experiment and micromagnetic simulation," Physical Review B, vol. 76, no. 17, Nov 2007.
  • [14] K. Askar and P. Jiang, "Self-assembled nanoparticle antireflection coatings on geometrically complex optical surfaces," Optics Letters, vol. 43, no. 21, pp. 5238-5241, 2018.
  • [15] A. Blanco and G. Hagy, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature, 10.1038/35013024 vol. 405, no. 6785, pp. 437-440, 05/25/print 2000.
  • [16] T. Ding, K. Song, K. Clays, and C.-H. Tung, "Bottom-Up Photonic Crystal Approach with Top-Down Defect and Heterostructure Fine-Tuning," Langmuir, vol. 26, no. 6, pp. 4535-4539, Mar 16 2010.
  • [17] J. D. Joannopoulos, Photonic Crystals. 2000, 2011.
  • [18] Y. Bao, H. Fong, and C. Jiang, "Manipulating the Collective Surface Plasmon Resonances of Aligned Gold Nanorods in Electrospun Composite Nanofibers," Journal of Physical Chemistry C, vol. 117, no. 41, pp. 21490-21497, Oct 17 2013.
  • [19] H. Yang and P. Jiang, "Large-Scale Colloidal SelfAssembly by Doctor Blade Coating," Langmuir, vol. 26, no. 16, pp. 13173-13182, 2013/12/25 2010.
  • [20] H. Yang and P. Jiang, "Macroporous photonic crystal-based vapor detectors created by doctor blade coating," Applied Physics Letters, vol. 98, no. 1, pp. 011104- 011104-3, 2011.
  • [21] N. Gozubenli, E. Yasun, and L. Boskic, "Fabrication of nanoporous film by transfer of colloidal particles and application to biomacromolecules," Applied Nanoscience, vol. 8, no. 4, pp. 739-750, 2018/04/01 2018.
  • [22] H. Yang, N. Gozubenli, Y. Fang, and P. Jiang, "Generalized Fabrication of Monolayer Nonclose-Packed Colloidal Crystals with Tunable Lattice Spacing," Langmuir, vol. 29, no. 25, pp. 7674-7681, Jun 25 2013.
  • [23] X. Liu, B. Choi, N. Gozubenli, and P. Jiang, "Periodic arrays of metal nanorings and nanocrescents fabricated by a scalable colloidal templating approach," Journal of Colloid and Interface Science, vol. 409, pp. 52- 58, 11/1/ 2013
  • [24] M. Bardosova, M. E. Pemble, I. M. Povey, and R. H. Tredgold, "The Langmuir-Blodgett Approach to Making Colloidal Photonic Crystals from Silica Spheres," Advanced Materials, vol. 22, no. 29, pp. 3104-3124, 2010.
  • [25] F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, "Colloid Monolayers as Versatile Lithographic Masks," Langmuir, vol. 13, no. 11, pp. 2983-2987, 1997/05/01 1997.
  • [26] P. Jiang, "Large-Scale Fabrication of Periodic Nanostructured Materials by Using Hexagonal Non-ClosePacked Colloidal Crystals as Templates," Langmuir, vol. 22, no. 9, pp. 3955-3958, 2013/12/25 2006.
  • [27] J. J. Kim, Y. Li, E. J. Lee, and S. O. Cho, "Fabrication of Size-Controllable Hexagonal Non-ClosePacked Colloidal Crystals and Binary Colloidal Crystals by Pyrolysis Combined with Plasma-Electron Coirradiation of Polystyrene Colloidal Monolayer," Langmuir, vol. 27, no. 6, pp. 2334-2339, Mar 15 2011.
  • [28] F. Caruso, H. Lichtenfeld, M. Giersig, and H. Mohwald, "Electrostatic self-assembly of silica nanoparticle - Polyelectrolyte multilayers on polystyrene latex particles," (in English), Journal of the American Chemical Society, Article vol. 120, no. 33, pp. 8523-8524, Aug 1998.
  • [29] A. M. Kalsin, M. Fialkowski, M. Paszewski, S. K. Smoukov, K. J. M. Bishop, and B. A. Grzybowski, "Electrostatic Self-Assembly of Binary Nanoparticle Crystals with a Diamond-Like Lattice," Science, vol. 312, no. 5772, pp. 420-424, 2006.
  • [30] Z. Ren, X. Li, J. Zhang, W. Li, X. Zhang, and B. Yang, "Tunable two-dimensional non-close-packed microwell arrays using colloidal crystals as templates," Langmuir, vol. 23, no. 15, pp. 8272-8276, Jul 17 2007.
  • [31] X. Yan, J. M. Yao, G. A. Lu, X. Chen, K. Zhang, and B. Yang, "Microcontact printing of colloidal crystals," Journal of the American Chemical Society, vol. 126, no. 34, pp. 10510-10511, Sep 1 2004.
  • [32] S. J. Ding, C. L. Zhang, M. Yang, X. Z. Qu, Y. F. Lu, and Z. Z. Yang, "Template synthesis of composite hollow spheres using sulfonated polystyrene hollow spheres," Polymer, vol. 47, pp. 8360-8366, 2006.
  • [33] P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, "Single-crystal colloidal multilayers of controlled thickness," Chemistry of Materials, vol. 11, no. 8, pp. 2132- 2140, Aug 1999.
  • [34] A. P. Bartlett, M. Pichumani, M. Giuliani, W. Gonzalez-Vinas, and A. Yethiraj, "Modified Spin-coating Technique to Achieve Directional Colloidal Crystallization," Langmuir, vol. 28, no. 6, pp. 3067-3070, Feb 14 2012.
  • [35] L. Li, T. Y. Zhai, H. B. Zeng, X. S. Fang, Y. Bando, and D. Golberg, "Polystyrene sphere-assisted onedimensional nanostructure arrays: synthesis and applications," (in English), Journal of Materials Chemistry, Article vol. 21, no. 1, pp. 40-56, 2011.
  • [36] P. Jiang and M. J. McFarland, "Wafer-Scale Periodic Nanohole Arrays Templated from TwoDimensional Nonclose-Packed Colloidal Crystals," Journal of the American Chemical Society, vol. 127, no. 11, pp. 3710- 3711, 2013/12/25 2005.
  • [37] M. Giuliani, W. Gonzalez-Vinas, K. M. Poduska, and A. Yethiraj, "Dynamics of Crystal Structure Formation in Spin-Coated Colloidal Films," Journal of Physical Chemistry Letters, vol. 1, no. 9, pp. 1481-1486, May 6 2010.
  • [38] A. Budkowski et al., "Polymer blends spin-cast into films with complementary elements for electronics and biotechnology," Journal of Applied Polymer Science, vol. 125, no. 6, pp. 4275-4284, Sep 15 2012.
  • [39] S. L. Burrs et al., "A comparative study of graphene-hydrogel hybrid bionanocomposites for biosensing," Analyst, 10.1039/C4AN01788A vol. 140, no. 5, pp. 1466-1476, 2015.
  • [40] H. Jiang, K. Yu, and Y. Wang, "Antireflective structures via spin casting of polymer latex," Optics Letters, vol. 32, no. 5, pp. 575-577, 2007/03/01 2007.
  • [41] X. Li et al., "Modulating Two-Dimensional NonClose-Packed Colloidal Crystal Arrays by Deformable Soft Lithography," Langmuir, vol. 26, no. 4, pp. 2930-2936, Feb 16 2010.
  • [42] P. Jiang, T. Prasad, M. J. McFarland, and V. L. Colvin, "Two-dimensional nonclose-packed colloidal crystals formed by spincoating," Applied Physics Letters, vol. 89, no. 1, Jul 3 2006.
  • [43] T. S. Juliane Junesch, and A. B. Dahlin, "Optical Properties of Nanohole Arrays in Metal–Dielectric Double Films Prepared by Mask-on-Metal Colloidal Lithography," vol. 6 (11),, ed: ACS Nano, 2012, pp. 10405-10415.