Dinamik Simülasyonlarda Bölüntünün Geometrik Şeklinin Basınç Davranışına Etkisinin Araştırılması

Bu makalede, LS-DYNA sonlu elemanlar çözücüsü kullanılarak gerçekleştirilen dinamik simülasyonlarda, bölüntünün geometrik şeklinin, basıncın havadaki ilerleyişine ve büyüklüğüne etkisi incelenmiştir. İncelenen geometrik şekiller kübik, silindirik ve küresel olarak seçilmiştir. Dinamik simülasyonu modellemek için ALE metodu kullanılmıştır. Hedef bir noktadaki pik basınç değerleri, test sahasındaki dinamik testten elde edilen değer ile kıyaslanmıştır. Son olarak çalışmada belirtilen koşullarda hangi bölüntünün geometrik şeklinin daha doğru sonuçlar verebileceği değerlendirilmiştir.

Investigation of the Effect of Mesh Geometric Shapes on Pressure Behavior in Dynamic Simulations

In this paper, the effect of the geometrical shapes of the mesh on the progress of pressure wave and magnitude was investigated in the dynamic simulations by using LS-DYNA finite element solver. Cubic, cylindrical and spherical geometrical shapes were chosen to be examined. ALE() method was carried out to model dynamic simulation. Peak pressure values at a target point were compared with the value obtained from the dynamic test in the test area. In conclusion, it was investigated that which mesh geometric shape could give more accurate results under the conditions specified in the study.

___

  • [1] Hallquist, J., LS-DYNA keyword user’s manual – Version 970, Livermore Software Technology Corporation, Livermore, 2012.
  • [2] G. F. Kinney and K. J. Graham, “Explosive Shocks in Air,” 1985.
  • [3] J.O. Hallquist, LS-DYNA Theory Manual, Livermore Software Technology Corporation, California, USA, 2006.
  • [4] B. Dobratz, “Properties of chemical explosives and explosive simulants,” 1972.
  • [5] A. Erdik, S. A. Kilic, N. Kilic, and S. Bedir, “Erratum to: Numerical simulation of armored vehicles subjected to undercarriage landmine blasts,” Shock Waves, vol. 26, no. 4, pp. 531–531, 2016.
  • [6] Z. S. Tabatabaei, J. S. Volz, J. Baird, B. P. Gliha, and D. I. Keener, “Experimental and numerical analyses of long carbon fiber reinforced concrete panels exposed to blast loading,” International Journal of Impact Engineering, vol. 57, pp. 70–80, 2013.
  • [7] W. Xiao, M. Andrae, L. Ruediger, and N. Gebbeken, “Numerical prediction of blast wall effectiveness for structural protection against air blast,” Procedia Engineering, vol. 199, pp. 2519–2524, 2017.
  • [8] A. Alia and M. Souli, “High explosive simulation using multi-material formulations,” Applied Thermal Engineering, vol. 26, no. 10, pp. 1032–1042, 2006.
  • [9] M. S. Chafi, G. Karami, and M. Ziejewski, “Numerical analysis of blast-induced wave propagation using FSI and ALE multi-material formulations,” International Journal of Impact Engineering, vol. 36, no. 10-11, pp. 1269–1275, 2009.
  • [10] G. F. Kinney and K. J. Graham, Explosive Shocks in Air. Berlin: Springer Berlin, 2014.
  • [11] P. S. Bulson, “A history of research and a review of recent developments,” Explosive Loading of Engineering Structures, 1997.
  • [12] T. Belytschko, D. Flanagan, and J. Kennedy, “Finite element methods with user-controlled meshes for fluidstructure interaction,” Computer Methods in Applied Mechanics and Engineering, vol. 33, no. 1-3, pp. 669–688, 1982.
  • [13] W. Noh, “Cel: A Time-Dependent, Two-SpaceDimensional, Coupled Eulerian-Lagrange Code,” 1963.
  • [14] N. Aquelet, M. Souli, J. Gabrys, and L. Olovson, “A new ALE formualtion for sloshing analysis,” Structural Engineering and Mechanics, vol. 16, no. 4, pp. 423–440, 2003.
  • [15] P. Woodward and P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks,” Journal of Computational Physics, vol. 54, no. 1, pp. 115–173, 1984.
ACADEMIC PLATFORM-JOURNAL OF ENGINEERING AND SCIENCE-Cover
  • ISSN: 2147-4575
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2013
  • Yayıncı: Akademik Perspektif Derneği