Atıksudan Fotokatalitik Yöntemle Boya Giderimi Ve Mineralizasyonu

Gelecek yılların en önemli çevresel sorunlarından biri su kirliliği ve su kıtlığıdır. Bu nedenle boyahaneleriyle yüksek miktarda su tüketen tekstil endüstrisi gibi üretim tesislerinin atıksularının ileri düzeyde arıtımı oldukça önemlidir. Bu atık suların uygun şekilde arıtılmaması insan ve canlı çevre üzerinde toksik ve kanserojenik etki yapmaktadır. Boyarmaddelerim karmaşık kompleks yapıları kirlettikleri suyun arıtımını oldukça zorlaştırmaktadır. Bu nedenle klasik arıtım yöntemleri yetersiz kalmaktadır. Son zamanlarda, bir ileri arıtım tekniği olan fotokatalitik yöntem boya giderimi konusunda ilgi çekmeye başlamıştır. Bu çalışmada katyonik boyanın (metilen mavisi) fotokatalitik yöntemle sulu çözeltiden giderimi ve mineralizasyonu çalışılmıştır. Deneyler için kullanılan reaktör laboratuvarda özel olarak tasarlamıştır. Ultraviyole ışık kaynağı olarak UV-C lambalar kullanılmıştır. Katalizör olarak en yaygın kullanılan iki katalizör olan TiO2 ve ZnO seçilmiştir. Mineralizasyon çalışmasının yanı sıra katalizörlerin optimum pH’ları, karışım halinde kullanıldığında alınan verim ve tekrar kullanıma uygunlukları değerlendirilmiş ve kıyaslanmıştır.

Photocatalytic Dye Removal And Mineralization From Wastewater

One of the most important environmental problems for the coming years is water pollution and water scarcity. For this reason, advanced treatment of wastewater from production facilities such as the textile industry, which consumes large amounts of water through dyeing plants, is very important. Improper treatment of these wastewaters has toxic and carcinogenic effects on human and living environment. Complex structures of dyestuffs make the treatment of the water contaminated by them quite difficult. Therefore, classical treatment methods are insufficient. Recently, photocatalytic method, an advanced treatment technique, has begun to attract interest on dye removal. In this study, removal and mineralization of cationic dye (methylene blue) from aqueous solution by photocatalytic method was studied. The reactor used for the experiments was specially designed in the laboratory. UV-C lamps are used as ultraviolet light source. TiO2 and ZnO as the catalyst most widely used two catalysts were selected. In addition to the mineralization study, the optimum pH of the catalysts, the efficiency obtained when used as a mixture and their suitability for reuse were evaluated and compared.

___

  • [1] S. R. Couto, “Dye removal by immobilised fungi”, Biotechnology Advances, vol. 27, no. 3, pp. 227–235, 2009..
  • [2] S. Natarajan, H. C. Bajaj, and R. J. Tayade, “Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process”, Journal of Environmental Sciences, vol. 65, pp. 201–222, 2018.
  • [3] A. B. D. Santos, F. J. Cervantes, and J. B. V. Lier, “Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology”, Bioresource Technology, vol. 98, no. 12, pp. 2369–2385, 2007.
  • [4] C. Ram, R. K. Pareek and V. Singh, “Photocatalytic degradation of textile dye by using titanium dioxide nanocatalyst”, International Journal of Theoretical and Applied Sciences, vol. 4, no. 2, pp. 82–88, 2012.
  • [5] A. R. Petcu, C. A. Lazar, E. A. Rogozea, N. L. Olteanu, A. Meghea, and M. Mihaly, “Nonionic microemulsion systems applied for removal of ionic dyes mixtures from textile industry wastewaters”, Separation and Purification Technology, vol. 158, pp. 155–159, 2016.
  • [6] G. Crini and P.-M. Badot, “Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature”, Progress in Polymer Science, vol. 33, no. 4, pp. 399–447, 2008.
  • [7] Y. Zhou, J. Lu, Y. Zhou, and Y. Liu, “Recent advances for dyes removal using novel adsorbents: A review”, Environmental Pollution, vol. 252, pp. 352–365, 2019.
  • [8] H. Pan, J. Feng, G.-X. He, C. E. Cerniglia, and H. Chen, “Evaluation of impact of exposure of Sudan azo dyes and their metabolites on human intestinal bacteria”, Anaerobe, vol. 18, no. 4, pp. 445–453, 2012.
  • [9] V. Gupta and Suhas, “Application of low-cost adsorbents for dye removal – A review”, Journal of Environmental Management, vol. 90, no. 8, pp. 2313–2342, 2009.
  • [10] N. Daneshvar, D. Salari, and A. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters”, Journal of Photochemistry and Photobiology A: Chemistry, vol. 157, no. 1, pp. 111–116, 2003.
  • [11] D. Georgiou, P. Melidis, A. Aivasidis, and K. Gimouhopoulos, “Degradation of azo-reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide”, Dyes and Pigments, vol. 52, no. 2, pp. 69–78, 2002.
  • [12] M. Moradi, F. Ghanbari, M. Manshouri, and K. A. Angali, “Photocatalytic degradation of azo dye using nanoZrO2/UV/Persulfate: Response surface modeling and optimization”, Korean Journal of Chemical Engineering, vol. 33, no. 2, pp. 539–546, Dec. 2015.
  • [13] U. Shamraiz, R. A. Hussain, A. Badshah, B. Raza, and S. Saba, “Functional metal sulfides and selenides for the removal of hazardous dyes from Water”, Journal of Photochemistry and Photobiology B: Biology, vol. 159, pp. 33–41, 2016.
  • [14] N. Nandhini, S. Rajeshkumar, and S. Mythili, “The possible mechanism of eco-friendly synthesized nanoparticles on hazardous dyes degradation”, Biocatalysis and Agricultural Biotechnology, vol. 19, p. 101138, 2019.
  • [15] M. Ghaedi, S. Hajjati, Z. Mahmudi, I. Tyagi, S. Agarwal, A. Maity, and V. Gupta, “Modeling of competitive ultrasonic assisted removal of the dyes – Methylene blue and Safranin-O using Fe3O4 nanoparticles”, Chemical Engineering Journal, vol. 268, pp. 28–37, 2015.
  • [16] B. Neppolian, S. Sakthivel, B. Arabindoo, M. Palanichamy, and V. Murugesan, “Degradation of textile dye by solar light using TiO2 and ZnO photocatalysts”, Journal of Environmental Science and Health, Part A, vol. 34, no. 9, pp. 1829–1838, 1999.
  • [17] M. Kaneko and I. Okura, Photocatalysis: science and technology. Tokyo: Kodansha, 2011.
  • [18] R. P. Souza, T. K. Freitas, F. S. Domingues, O. Pezoti, E. Ambrosio, A. M. Ferrari-Lima, and J. C. Garcia, “Photocatalytic activity of TiO2, ZnO and Nb2O5 applied to degradation of textile wastewater”, Journal of Photochemistry and Photobiology A: Chemistry, vol. 329, pp. 9–17, 2016.
  • [19] X. Zhu, C. Yuan, Y. Bao, J. Yang, and Y. Wu, “Photocatalytic degradation of pesticide pyridaben on TiO2 particles”, Journal of Molecular Catalysis A: Chemical, vol. 229, no. 1-2, pp. 95–105, 2005.
  • [20] N. Guettaï and H. A. Amar, “Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part I: Parametric study,” Desalination, vol. 185, no. 1-3, pp. 427–437, 2005.
  • [21] A. Akyol, H. Yatmaz, and M. Bayramoglu, “Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions”, Applied Catalysis B: Environmental, vol. 54, no. 1, pp. 19–24, 2004.
  • [22] M. Konyar, H. C. Yatmaz, and K. Öztürk, “Sintering temperature effect on photocatalytic efficiencies of ZnO/TiO2 composite plates”, Applied Surface Science, vol. 258, no. 19, pp. 7440–7447, 2012.
  • [23] E. Yassıtepe, H. Yatmaz, C. Öztürk, K. Öztürk, and C. Duran, “Photocatalytic efficiency of ZnO plates in degradation of azo dye solutions”, Journal of Photochemistry and Photobiology A: Chemistry, vol. 198, no. 1, pp. 1–6, 2008.
  • [24] D. Štrbac, C. A. Aggelopoulos, G. Štrbac, M. Dimitropoulos, M. Novaković, T. Ivetić, and S. N. Yannopoulos, “Photocatalytic degradation of Naproxen and methylene blue: Comparison between ZnO, TiO2 and their mixture”, Process Safety and Environmental Protection, vol. 113, pp. 174–183, 2018.
ACADEMIC PLATFORM-JOURNAL OF ENGINEERING AND SCIENCE-Cover
  • ISSN: 2147-4575
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2013
  • Yayıncı: Akademik Perspektif Derneği