Bazı Omurgasız Türlerinin Moleküler Sistematik Açıdan Değerlendirilmesi

Sistematik çalışmalarda taksonlar arasındaki benzerlik ve farklılıkların tam olarak ifade edilebilmesi gerekmektedir. Moleküler biyoloji ve bu alanda kullanılan bir çok tekniğin hızlı bir şekilde ilerlemesi ile birlikte, türler ve populasyonlar arasındaki çeşitliliğin belirlenmesinde yeni veriler elde edilmiştir. Moleküler teknikler kullanılarak elde edilen bu veriler sayesinde canlılar arasındaki moleküler düzeydeki farklılıklar daha net olarak ifade edilmeye başlanmıştır. Türlerin ve populasyonların doğal olarak korunması ancak genetik çeşitliliğin korunmasıyla sağlanabilmektedir. Sistematik çalışmalarda son derece önemli olan moleküler veriler, çeşitli genetik markırlara dayanılarak gerçekleştirilmektedir. Bu genetik markırlar çeşitli morfolojik karakterler kullanılarak birbirinden ayrılması güç olan türlerin teşhisindeki çalışmalara katkı sağlamaktadır. Türlerin veya taksonların genomlarındaki belirli bölgelerin nükleotid farklılıkların hesaplanmasıyla filogenetik olarak karşılaştırma yapılabilir ve bu sayede filogenetik ağaçlar oluşturulabilir. Bu yolla oluşturulan filogenetik ağaçların dal uzunlukları hesaplanarak türlerin ne kadar zaman önce farklılaştıkları tahmin edilebildiği gibi türler arasındaki evrimsel ilişkileri zamansal olarak tahmin etmekde mümkündür. Aynı zamanda moleküler teknikler kullanarak türleşme ve türleşmeye neden olan evrimsel süreçler ve bu süreçlerin işleyişi hakkında önemli veriler elde edilmektedir. Burada omurgasızlar için tür tespitinde teşhisin güç olduğu durumlar da göz önünde bulundurularak, moleküler sistematik yöntemlerle yapılmış çalışmalardan elde edilen veriler özetlenmiştir

Molecular Systematic Evaluation Of Some Invertebrate Species

In systematic studies, similarities and differences between the taxa should be fully expressed. With the rapid progress of molecular biology and many techniques used in this area, new data has been obtained in determining the diversity between species and populations. Thanks to this data that was obtained using molecular techniques has begun to show more clear information about the differences in the molecular levels between the living things. Natural protection of species and populations can only be achieved by conserving genetic diversity. Molecular data, which is extremely important in systematic studies, is based on a variety of genetic markers. Genetic markers contribute to the identification of species that are difficult to distinguish from one another using a variety of morphological characters. Phylogenetic comparison can be made by calculating nucleotide differences in specific regions of genomes of species or taxa, and phylogenetic trees can be created on this basis. By calculating the branch lengths of the phylogenetic trees formed in this way, it can be estimated how long ago the species differed and it is possible to predict the evolutionary relationships between species in a timely manner. At the same time, important data are obtained about the evolutionary processes causing the speciation and speciation by using molecular techniques and the functioning of these processes. The data obtained from the studies made with molecular systematic methods are summarized, taking into consideration the cases about the identification of the species for invertebrates is difficult

___

  • Albrecht, C. ve Wilke, T. 2008. Ancient Lake Ohrid: biodiversity and evolution. Hydrobiologia, 615, 103–140.
  • Atanassova, P., C. P. Brookes, H. D. Loxdale & L. Powell, 1998. Electrophoretic study of five aphid parasitoid species of the genus Aphidius (Hymenoptera: Braconidae), including evidence for reproductively isolated sympatric populations and cryptic species. Bulletin of Entomological Research, 88: 3–13.
  • Avise, J.C., 2009. Phylogeography: retrospect and prospect. J. Biogeogr. 36 (1), 3–15.
  • Baird, H.P., Miller, K.J., Stark, J.S., 2012. Genetic population structure in the Antarctic benthos: insights from the widespread amphipod. Orchomenella franklini. PLoS One 7 (3) e34363.
  • Behura, K. S., 2006. Molecular marker systems in insects: current trends and future avenues. Molecular Ecology 15: 3087-3113.
  • Brown, J.R., Doolittle, W.F., 1995. Root of the universal tree based on ancient aminoacyl- tRNA synthetase gene duplications. Proc. Natl. Acad. Sci-Biol. USA 92, 2441–2445.
  • Brown, J.R., Robb, F.T., Weiss, R., Doolittle, W.F., 1997. Evidence for the early divergence of tryptophanyl and tyrosyl-tRNA synthetases. J. Mol. Evol. 45, 9–16.
  • Burks, R. A., Pinto, J. D. 2002. Reproductive and electrophoretic comparisons of Trichogramma californicum Nagaraja and Nagarkatti with the T. minutum complex. Proceedings of the Entomological Society of Washington, 104: 33–40.
  • Cameron, P. J., Powell, W., Loxdale, H. D., 1984. Reservoirs for Aphidius ervi (Hymenoptera: Aphidiidae), a polyphagous parasitoid of cereal aphids (Hemiptera: Aphididae). Bulletin of Entomological Research, 74: 647- 656.
  • Chatzimanolis, S., Cohen, I. M., Schomann, A., Solodovnikov, A., Molecular Phylogeny of the Mega-Diverse Rove Beetle Tribe Staphylinini (Insecta, Coleoptera, Staphylinidae). Zoologica Scripta, 39, 5, 436-449, (2010).
  • Colgan, D.J., Ponder, W.F., Beacham, E. ve Macaranas, J. 2007. Molecular phylogenetics of Caenogastropoda (Gastropoda: Mollusca). Molecular Phylogenetics and Evolution, 42, 717–737.
  • Doğan, A., Dağlı, E., Özcan,T., Bakır, K., Ergen, Z., Önen, M., ve Katağan,T. 2007. Türkiye denizlerinde dağılım gösteren ekonomik öneme sahip omurgasızlar. Türk sucul yaşam dergisi. 3-5: (5-8), 36-44.
  • Elven, H., Bachmann, L. ve Gusarov, V. I., Phylogeny of the Tribe Athetini (Coleoptera: Staphylinidae) Inferred from Mitochondrial and Nuclear Sequence Data. Molecular Phylogenetics and Evolution, 57, 1, 84-100, (2010).
  • Ergüden, D. 2007. Türkiye Denizlerindeki Tirsilerin ( Alosa Spp.) Moleküler Sistematiği (Doktora Tezi). Çukurova Üniversitesi, TR.
  • Falniowski, A., Szarowska, M ve Grzmil, P. 2007. Daphniola Radoman, 1973 (Gastropoda: Hydrobiidae): shell biometry, mtDNA, and the Pliocene flooding. Journal of Natural History, 41(37–40), 2301–2311.
  • Folmer, O., Hoeh, W.R., Black, M.B., Vrijenhoek, R.C., 1994. Conserved primers for PCR ampliŞcation of mitochondrial DNA from different invertebrate phyla. Mol. Mar. Biol. Biotechnol. 3, 294–299.
  • Grande, C., Templado, J., Cervera, J.L ve Zardoya, R. 2002. The Complete Mitochondrial Genome of the Nudibranch Roboastra europaea (Mollusca: Gastropoda) Supports the Monophyly of Opisthobranchs. Molecular Biology Evolution, 19(10), 1672–1685.
  • Gülşen, O. ve Mutlu, N., 2005. Bitki biliminde kullanılan genetik markırlar ve kullanım alanları. Alatarım, 4 (2): 27-37.
  • Hare, M.P., 2001. Prospects for nuclear gene phylogeography. Trends Ecol. Evol. 16 (12), 700-706.
  • Hayashi, R., Chan, B.K., Simon-Blecher, N., Watanabe, H., Guy-Haim, T., Yonezawa, T., Levy, Y., Shuto, T., Achituv, Y., 2013. Phylogenetic position and evolutionary history of the turtle and whale barnacles (Cirripedia: Balanomorpha: Coronuloidea). Mol. Phylogenet. Evol. 67, 9–14.
  • Hershler, R ve Liu, H.P. 2004. A molecular phylogeny of aquatic gastropods provides a new perspective on biogeographic history of the Snake River Region. Molecular Phylogenetics and Evolution, 32, 927–937.
  • Hoffman, J.I., Clark, M.S., Amos, W., Peck, L.S., 2012. Widespread ampliŞcation of ampliŞed
  • Hoffman, J.I., Clarke, A., Linse, K., Peck, L.S., 2011. Effects of brooding and broadcasting reproductive modes on the population genetic structure of two Antarctic gastropod molluscs. Mar. Biol. 158 (2), 287–296.
  • Hornung, E., 2011. Evolutionary adaptation of oniscidean isopods to terrestrial life: structure, physiology and behavior. Terr. Arthropod. Rev. 4, 95–130.
  • Hoy, M. A. 2003 Insect Molecular Genetics, edition two, Academic Press/Elsevier, San Diego. 560 pp
  • Ikawa, T., Onodera, S., Okabe, H., Hoshizaki, S. ve Cheng, L., 2007 Occurrence and Density of Halobates Micans (Hemiptera: Gerridae) in the Eastern South Indian Ocean. Entomological Science, 10, 2, 213-215.
  • Javidkar M, Steven J.B. Cooper , Rachael A. King , William F. Humphreys, Terry Bertozzi, Mark I. Stevens, Andrew D. Austin 2016. Molecular systematics and biodiversity of oniscidean isopods in the groundwater calcretes of central Western Australia, Molecular Phylogenetics and Evolution 104 (2016) 83–98.
  • Kandemir İ. & Kence A. 1995. Allozyme variation in a central Anatolian honeybee (Apis mellifera L.) population. Apidologie, 26: 503–510.
  • Kandemir, İ., Kence, M. & Kence A. 2000. Genetic and morphometric variation in honeybee (Apis mellifera L.) populations of Turkey. Apidologie, 31: 343–356.
  • Kimani-Njogu, S. K., Overholt, W. A., Woolley, J. B. & Omwega, C. O., 1998. Electrophoretic and phylogenetic analyses of selected allopatric populations of the Cotesia flavipes complex (Hymenoptera: Braconidae), parasitoids of cereal stem borers. Biochemical Systematics and Ecology, 26: 285–296.
  • Koca, S.B. 2007. Batı Anadolu Rıssoacea (Gastropoda, Prosobranchıa) Faunasının Belirlenmesi (Doktora Tezi). Süleyman Demirel Üniversitesi, TR.
  • Linse, K., Jackson, J.A., Fitzcharles, E., Sands, C.J., Buckeridge, J.S., 2013. Phylogenetic position of Antarctic Scalpelliformes (Crustacea: Cirripedia: Thoracica). DeepSea Res. Part I – Oceanogr. Res. Papers 73, 99–116.
  • Linse,K.,Cope,T.,Lörz,A.N.,Sands,C.,2007.Is the Scotia Sea a centre of Antarctic marine diversiŞcation? Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadensis (Arcoidea: Philobryidae). Polar Biol. 30 (8), 1059–1068.
  • Loxdale, H. D. & Brookes, C. P. 1990 Temporal Genetic Stability Within and Restricted Migration (Gene Flow) Between Local Populations of the Blackberry-Grain Aphid Sitobion fragariae in South-East England. Journal of Animal Ecology, 59 (2): 497-514
  • Malay, M.C.D., Michonneau, F., 2014. Phylogenetics and morphological evolution of coral- dwelling barnacles (Balanomorpha: Pyrgomatidae). Biol. J. Linn. Soc. 113, 162–179.
  • Martin, J.W., Davis, G.E., 2001. An updated classiŞcation of the recent Crustacea. Nat. Hist. Mus. Los Angeles Cy. Sci. Ser. 39, 1–124.
  • Mutlu AG, Bilginer A, Dükel M, Kebapçı Ü, Çağlan DC, Yıldırım MZ 2015. Antalya Bölgesindeki İstilacı Bir Salyangoz Türünün Moleküler Filogenisi, Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6(1): 31-35 (2015).
  • Nagel, G.M., Doolittle, R.F., 1995. Phylogenetic analysis of the aminoacyl-tRNA synthetases. J. Mol. Evol. 40, 487–498.
  • Newman, W.A., 1996. Sous-Classe des Cirripèdes (Cirripedia Burmeister, 1834). Super- ordres des Thoraciques et des Acrothoraciques (Thoracica Darwin, 1854 – Acrothoracica Gruvel, 1905). In: Forest, J. (Ed.), Traité de Zoologie, Tome VII Fasc. II, Crustacés: Generalites (suite) et Systématique (1. parti), Masson, Paris, pp. 453– 540.
  • Newman, W.A., Ross, A., 1976. Revision of the balanomorph barnacles; including a catalog of the species. Mem. San Diego Soc. Nat. Hist. 9, 1–108.
  • Osborn, K.J., 2008. Relationships within Munnopsidae (Crustacea, Isopoda, Asellota) based on three genes. Zool. Scr. 38, 617–635.
  • Pérez-Losada M, Hİeg JT, Simon-Blecher N, Achituv Y, Jones D, Crandall KA 2014. Molecular phylogeny, systematics and morphological evolution of the acorn barnacles (Thoracica: Sessilia: Balanomorpha), Molecular Phylogenetics and Evolution 81: 147– 158.
  • Pérez-Losada, M., Harp, M., Hoeg, J.T., Achituv, Y., Jones, D., Watanabe, H., Crandall, K.A., 2008. The tempo and mode of barnacle evolution. Mol. Phylogenet. Evol. 46, 328–346.
  • Pérez-Losada, M., Hİeg, J.T., Crandall, K.A., 2004. Unraveling the evolutionary radiation of the Thoracican barnacles using molecular and morphological evidence: a comparison of several divergence time estimation approaches. Syst. Biol. 53, 244–264.
  • Pérez-Losada, M., Hoeg, J.T., Crandall, K.A., Achituv, Y., 2012. Molecular phylogeny and character evolution of the chthamaloid barnacles (Cirripedia: Thoracica). Mol. Phylogenet. Evol. 65, 329–334.
  • Pinto, J. D., Platner, G. R. & Sassaman, C. A., 1993. Electrophoretic study of two closely related species of North American Trichogramma: T. pretiosum and T. deion (Hymenoptera: Trichogrammatidae). Annals of the Entomological Society of America, 86: 702–709.
  • Pinto, J. D., Platner, G. R., Stouthamer, R., 2003. The systematics of the Trichogramma minutum species complex (Hymenoptera: Trichogrammatidae), a group of important North American biological control agents: the evidence from reproductive compatibility and allozymes. Biological Control, 27: 167–180.
  • Pintureau, B., 1993. Enzyme polymorphism in some African, American, and Asiatic Trichogramma and Trichogrammatoidea species (Hymenoptera: Trichogrammatidae). Biochemical Systematics and Ecology, 21: 557–573. 10 Sub-Saharan Africa: New Phylogenetic Insights into the Rove Beetle Tribe Staphylinini (Coleoptera: Staphylinidae). Systematic Entomology, 34, 3, 443-466, (2009).
  • Song, H., Buhay, J.E., Whiting, M.F., Crandall, K.A., 2008. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coampliŞed. Proc. Natl. Acad. Sci. 105 (36), 13486–13491.
  • Tsang, L.M., Chu, K.H., Nozawa, Y., Chan, B.K., 2014. Morphological and host speciŞcity evolution in coral symbiont barnacles (Balanomorpha: Pyrgomatidae) inferred from a multi-locus phylogeny. Mol. Phylogenet. Evol. 77, 11–22.
  • Wägele, J.W., Holland, B., Dreyer, H., Hackethal, B., 2003. Searching factors causing implausible non-monophyly: ssu rDNA phylogeny of Isopoda Asellota (Crustacea: Peracarida) and faster evolution in marine than in freshwater habitats. Mol. Phylogenet. Evol. 28, 536–551.
  • Wares, J.P., Pankey, M.S., Pitombo, F., Daglio, L.G., Achituv, Y., 2009. A ‘‘shallow phylogeny’’ of shallow barnacles (chthamalus). PLoS One 4, e5567.
  • Weide, D., Thayer, M. K., Newton A. F., Betz, O., 2010. Comparative Morphology of the Head of Selected Sporophagous and Non-Sporophagous Aleocharinae (Coleoptera: Staphylinidae): Musculature and Hypopharynx-Prementum Complex. Journal of Morphology, 271, 8, 910-931.
  • Wilson, N.G., Schrödl, M., Halanych, K.M., 2009. Ocean barriers and glaciation: evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Mol. Ecol. 18 (5), 965–984.
  • WoRMS Editorial Board, 2014. World Register of Marine Species. at VLIZ.