Yaşlı Zeytin Ağaçlarında Budamanın Bitki Gaz Alışverişi Üzerine Etkileri

Geleneksel (eski usul) zeytin (Olea europaea L.) yetiştiriciliğimiz, marjinal alan olarak kabul edilen, eğimli ve kır arazilerde, sulama yapılmadan gerçekleştirilmektedir. Son yıllarda modern sık dikim zeytin yetiştiriciliği ülkemizde hızla yaygınlaşmaya başlamış olmakla birlikte özellikle eğimli ve kır arazilerde diğer birçok ürünün yetiştiriciliği ekonomik olmadığı için, zeytin yetiştiriciliği bu tip arazilerde ekonomik önemini korumaktadır. Geleneksel yetiştiriciliğimizde, sulama başta olmak üzere, birçok kültürel uygulama yapılmamakta ya da yeterli olmamaktadır. Bu çalışmada, düzenli budama yapılan ve yapılmayan zeytin ağaçlarında gaz alışverişi kapasitesinin ve bitki taç gelişiminin belirlenmesi hedeflenmiştir. Bu amaçla; fotosentez (PN µmol/m2/s) ve transpirasyon (T mmol/m2/s) ölçümleri yapılmış, bitkilerin su kullanım etkinliği (WUE) hesaplanmıştır. Taç gelişiminin ve fotosentetik aktif yüzeyin belirlenmesi amacıyla da yaprak alanı indeksi (LAI) hesaplanmıştır. Çalışma sonucunda elde edilen bulgulara göre; düzenli budama uygulanan ağaçlarda su kullanımının daha etkin olduğu ve bitkilerin kuraklıktan daha az etkilendikleri belirlenmiştir.

The Effects of Pruning on Gas Exchange in Old Olive Trees

Traditional olive (Olea europaea L.) growing is carried out in sloping and barren areas without irrigation which are considered as marginal lands. Although modern olive cultivation has started to spread rapidly in recent years, traditional olive cultivation maintains its economic importance in these marginal lands. The aim of this study is to determine the gas exchange capacity and plant crown development in olive trees with and without regular pruning. For this purpose; photosynthesis (PN µmol/m2/s) and transpiration (T mmol/m2/s) were measured and the water use efficiency (WUE) was calculated as the ratio of PN and T. Leaf area index (LAI) was also measured and calculated to determine the crown development and photosynthetic active surface. According to the obtained data as a result of the study; it was determined that water use was more efficient in trees subjected to regular pruning and plants were less affected by drought.

___

  • Anonim, 2017. Türkiye İstatistik Kurumu, Bitkisel üretim verileri.
  • Barone, E., Di Marco, L. 2003 “Morfologia e ciclo di sviluppo”, Fiorino, P. (a cura, 2003), Olea. Trattato di olivicoltura. Il Sole 24 Ore Edagricole, pp. 12-35.
  • Berenguer M. J., Vossen P. M., Grattan S. R. , Connell J. H., Polito V.S., 2006. Tree irrigation levels for optimum chemical and sensory properties of olive oil. Horticultural Science 41: 427-432.
  • Bongi, G., Mencuccini, M., Fontanaza, G., 1987. Photosynthesis of olive leaves: effect of liht, flux density, leaf age, temperature, peltates and H2O vapor pressure deficit on gas exchange, J. Am. Soc. Hort. Sci. 112,143–148 pp.
  • Boyer, J. S., Annond, P. A., Sharp, R. E., 1987. Light stress and leaf water relations. Kyle DJ, Osmond C. D., Arntzen C. J.. Photoinhibition. topics in photosynthesis, Vol. 9. 111-22, Amsterdam: Elsevier
  • Can, H. Z., Aksoy U., 2007. Seasonal and diurnal photosynthetic behaviour of fig (Ficus carica L.) under semi-arid climatic conditions. Acta Agriculturae Scandinavica, Section B Soil & Plant Science Vol. 57 , Iss. 4
  • Condon, A. G. Hall A. E.,1997. Adaptation to diverse environments: genotypic variation in water-use efficiency within crop species. Jackson L. E. Agricultural ecology. San Diego, CA: Academic Press, 79–116pp.
  • Díaz-Espejo, A., Walcroft, A. S., Fernández, J. E., Hafidi, B., Palomo, M. J., Girón, I. F., 2006. Modeling photosynthesis in olive leaves under drought conditions. Tree Physiology 26, 1445–1456.
  • Epron, D., Dreyer, E., Breda, N., 1992. Photosynthesis of oak trees (Quercus petraea (Matt.) Liebl.) during drought under field conditions: diurnal course of net CO2 assimilation and photochemical efficiency of photosystem II. Plant, Cell and Environment , 15, 809-820.
  • Heywood, V. H., 1978. Flowering Plants of the World. Oxford, London. Melbourne: Oxford University press.
  • Hunt, R., 1990. Basic Growth Analysis. Unwin Hyman Ltd., London
  • Knyazikhin, Y., Martonchik, J. V., Myneni, R. B., Diner, D. J., Running, S. W., 1998. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J. Geophys. Res., 103(D24), 32257–32275.
  • Kurth, W., 1994. Morphological models of plant growth: Possibilities and ecological relevance. Ecological Modelling. Vol. 75–76: 299-308.
  • Lawlor, D.W., Cornic, G., 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environment , 25, 275-294.
  • Long, S.P., Humphries, S., Falkowski, P.G., 1994. Photoinhibition of photosynthesis in nature. Annual Review Plant Physiology Plant Molecular Biology, 45, 633-662.
  • Mariscal, M. J., Orgaz, F., Villalobos, F. J.,2000. Modelling and measurement of radiation interception by olive canopies. Agricultural and Forest Meteorology 100: 183–197.
  • McPherson, E. G. Peper, P. J.,1998. Comparison of five methods for estimating leaf area index of open grown deciduous trees. Journal of Arboriculture. 24(2): 98-111.
  • Moorthy, I., Miller, J. R., Berni, J. A J., Zarco-Tejada, P., Jing Chen, B. H., 2011. Field characterization of olive (Olea europaea L.) tree crown architecture using terrestrial laser scanning data. Agricultural and Forest Meteorology. Volume 151, Issue 2, 15 February 2011, Pages 204-214
  • Moriana, A., Villalobos, F.J., Fereres, E., 2002. Stomatal and photosynthetic responses of olive (Olea europaea L.) leaves to water deficits, Plant, Cell and Environment, 25, 395–405 pp.
  • Nogues, S., Baker, N. R., 2000. Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation, Journal of Experimental Botany, 51, 1309-1317pp.
  • Norman, J. M., Campbell, G. S., 1989. Canopy structure. In: Pearcy, R.W., Ehleringer, J., Mooney, H.A., Rundel, P.W. (Eds.), Plant Physiological Ecology: Field Methods and Instrumentation. Chapman and Hall, London, pp. 301–326.
  • Özkaya, M.T., Ulaş, M., Çakır, E., 2008. “Zeytin Ağacı ve Zeytin Yetiştiriciliği”, 1-25s, “Zeytinyağı” (ed: Göğüş, F., Özkaya, M.T. ve Ötleş, S.,), Eflatun Yayınevi, Ankara. 267s.
  • Özkaya, M.T., Tunalıoğlu, R., Eken, Ş., Ulaş, M., Tan, M., Danacı, A., İnan, N., Tibet, Ü., 2010. 'Türkiye Zeytinciliğinin Sorunları ve Çözüm Önerileri' TMMOB Ziraat Mühendisleri Odası, Ziraat Mühendisliği VII. Teknik Kongresi, 11-15 Ocak 2010, 515-537, Ankara.
  • Patakas, A., D. Stavrakas, Vrahnakis, M. S., 1997. Influence of Two Different Trainning Systems on WUE of Grapevines. Proc. 2nd. Int. Symp. On Irrigation of Hort. Crops. Ed: K. S. Chartzoulakis, Acta Hort. 449 Vol:2 :461-466.
  • Powles, S.B., 1984. Photoinhibition of photosynthesis induced by visible light. Annual Review Plant Physiology, 35, 15-44.
  • Tezara, W., Martinez, D., Rengifo, E., Herrera, A., 2003. Photosynthetic responses of the tropical spiny shrub Lycium nodosum (Solanaceae ) to drought, soil salinity and saline spray. Annals of Botany, 92, 757-765.
  • Veshaj, Z., Ismaili, H., 2016. Regeneration of degraded olive trees with varying degrees of pruning. Ol. Scient. J. 1(3): 14 – 21.
  • Yiqi L., Hui, D., Cheng, W., Coleman, J. S., Johnson, D. W., Sims, D. A., 2000. Canopy quantum yield in a mesocosm study. Agricultural and Forest Meteorology 100:35-48.