Aquarium Behavioral Genetics

Aquarium Behavioral Genetics

The relationships between genes, environments, and the stress response, as well as their roles in the development and progression of disease, are largely unclear. Addiction, as well as mood and anxiety disorders, are behavioural diseases that can be influenced by both genetic and environmental factors. It is possible to determine the genetic or epigenetic contribution to polygenic disease with unbiased forward genetic screens. Phenotype analysis is facilitated by the quick distinction between mutant carriers and non-carriers in both larval and adult zebrafish. Visual sorting is made possible by gene-break transposon mutagenesis techniques or by selectively breeding cloned mutants to fluorescently tagged linkage groups. This crucial step enables the focus to be placed on the impact of a single gene rather than the influence of a diverse genome on complicated behavioural characteristics. Utilising mutagenesis in conjunction with trustworthy behavioural assays in both the larval and adult Zebrafish will make it possible to do genome-wide studies on the genes that affect how stress is perceived, how it spreads, and how it is attenuated. Longitudinal screens that look at the stress response as. Its evolves from larvae to adults can be used to identify genetic systems that are essential for perceiving environmental cues and epigenetic programming of the stress response.

___

  • References: 1- Dereje, S., S. Sawyer, S. E. Oxendine, L. Zhou, Z. D. Kezios, R. Y. Wong, J. Godwin and F. Perrin (2012). "Comparing behavioral responses across multiple assays of stress and anxiety in zebrafish (Danio rerio)." Behaviour 149(10-12): 1205.
  • 2- Engeszer, R. E., L. B. Patterson, A. A. Rao and D. M. Parichy (2007). "Zebrafish in the wild: a review of natural history and new notes from the field." Zebrafish 4(1): 21-40.
  • 3- Kegel, L., M. Rubio, R. G. Almeida, S. Benito, A. Klingseisen and D. A. Lyons (2019). "Forward Genetic Screen Using Zebrafish to Identify New Genes Involved in Myelination." Methods Mol Biol 1936: 185- 209.
  • 4- Gore, A. V., L. M. Pillay, M. Venero Galanternik and B. M. Weinstein (2018). "The zebrafish: A fintastic model for hematopoietic development and disease." Wires Dev Biol 7(3): e312.
  • 5- Horsfield, J. A. (2019). "Packaging development: how chromatin controls transcription in zebrafish embryogenesis." Biochem Soc T 47(2): 713-724.
  • 6- Joly, J.-S., J.-S. (2017). Aquatic Model Organisms in Neurosciences: The Genome-Editing Revolution. Genome Editing in Neurosciences, Springer: 21-29.
  • 7- Al-Samadi, A., K. Tuomainen, A. Kivimäki, A. Salem, S. Al-Kubati, A. Hyytiäinen, M. Parikka, K.Mesimäki, T. Wilkman, A. Mäkitie, R. Grenman and T. Salo (2019). "PCR-based zebrafish model for personalised medicine in head and neck cancer." J Transl Med 17(1): 235.
  • 8- Gaudenzi, G. and G. Vitale (2019). "Transplantable zebrafish models of neuroendocrine tumors." Ann Endocrinol-Paris 80.
  • 9- Valadas, J., R. Mocelin, A. Sachett, M. Marcon, R. A. Zanette, E. Dallegrave, A. P. Herrmann and A. Piato (2019). "Propiconazole induces abnormal behavior and oxidative stress in zebrafish." Environ Sci Pollu R 26(27): 27808-27815.
  • 10- White, R. M., A. Sessa, C. Burke, T. Bowman, J. LeBlanc, C. Ceol, C. Bourque, M. Dovey, W. Goessling, C. E. Burns and L. I. Zon (2008). "Transparent adult zebrafish as a tool for in vivo transplantation analysis." Cell stem cell 2(2): 183-189.
  • 11- Haffter, P., J. Odenthal, M. C. Mullins, S. Lin, M. J. Farrell, E. Vogelsang, F. Haas, M. Brand, F. J. van Eeden, M. Furutani-Seiki, M. Granato, M. Hammerschmidt, C. P. Heisenberg, Y. J. Jiang, D. A. Kane, R. N. Kelsh, N. Hopkins and C. Nüsslein-Volhard (1996). "Mutations affecting pigmentation and shape of the adult zebrafish." Dev Genes Evol 206(4): 260-276.
  • 12- Van Eeden, F. J., M. Granato, U. Schach, M. Brand, M. Furutani-Seiki, P. Haffter, M. Hammerschmidt, C. P. Heisenberg, Y. J. Jiang, D. A. Kane, R. N. Kelsh, M. C. Mullins, J. Odenthal, R. M. Warga and C. Nüsslein-Volhard (1996). "Genetic analysis of fin formation in the zebrafish, Danio rerio." Development 123: 255-262.
  • 13- Guryev, V., M. J. Koudijs, E. Berezikov, S. L. Johnson, R. H. A. Plasterk, F. J. M. van Eeden and E. Cuppen (2006). "Genetic variation in the zebrafish." Genome Res 16(4): 491-497.
  • 14- Coe, T. S., P. B. Hamilton, A. M. Griffiths, D. J. Hodgson, M. A. Wahab and C. R. Tyler (2009). "Genetic variation in strains of zebrafish (Danio rerio) and the implications for ecotoxicology studies." Ecotoxicology 18(1): 144-150.
  • 15- Suurväli, J., A. R. Whiteley, Y. Zheng, K. Gharbi, M. Leptin and T. Wiehe (2019). "The laboratory domestication of zebrafish: from diverse populations to inbred substrains." bioRxiv: 706382.
  • 16- Van Den Bos, R., W. Mes, P. Galligani, A. Heil, J. Zethof, G. Flik and M. Gorissen (2017). "Further characterisation of differences between TL and AB zebrafish (Danio rerio): Gene expression, physiology and behaviour at day 5 of the larval stage." PloS one 12(4): e0175420-e0175420.
  • 17- Holden, L. A. and K. H. Brown (2018). "Baseline mRNA expression differs widely between common laboratory strains of zebrafish." Sci Rep-UK 8(1): 4780.
  • 18- London, S. and H. Volkoff (2019). "Effects of fasting on the central expression of appetite-regulating and reproductive hormones in wild-type and Casper zebrafish (Danio rerio)." Gen Comp Endocr 282: 113207-113207. 19- Fontana, B. D., F. V. Stefanello, N. J. Mezzomo, T. E. Müller, V. A. Quadros, M. O. Parker, E. P. Rico and D. B. Rosemberg (2018). "Taurine modulates acute ethanol-induced social behavioral deficits and fear responses in adult zebrafish." J Psychiatr Res 104: 176-182.
  • 20- Mustafa, A., E. Roman and S. Winberg (2019). "Boldness in Male and Female Zebrafish (Danio rerio) Is Dependent on Strain and Test." Front Behav Neurosci 13: 248-248. Nash, J. P., D. E. Kime, L. T. Van der Ven, P. W. Wester, F. Brion, G. Maack, P. Stahlschmidt-Allner and C. R. Tyler (2004). "Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish." Environ Health Persp 112(17): 1725-1733.
  • 21- Mokdad AH, Marks JS, Stroup DF, Gerberding JL. Actual causes of death in the United States, 2000. JAMA. 2004;291:1238–1245.
  • 22- Kessler RC, Chiu WT, Dernier O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62:617–627.
  • 23- World Health Organization. The global burden of disease: 2004 update. Geneva, Switzerland: WHO Press; 2008. pp. 1–160.
  • 24- Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and meta-analysis. The American Journal of Psychiatry. 2000;157:1552–1562.
  • 25- Kendler KS, Gardner CO, Gatz M, Pedersen NL. The sources of co-morbidity between major depression and generalized anxiety disorder in a Swedish national twin sample. Psychological medicine. 2007;37:453–462.
  • 26- Wittchen H-U, Kessler RC, Beesdo K, Krause P, Höfler M, Hoyer J. Generalized anxiety and depression in primary care: prevalence, recognition, and management. J Clin Psychiatry. 2002;63 (Suppl 8):24–34.
  • 27- Iñiguez SD, Warren BL, Parise EM, Alcantara LF, Schuh B, Maffeo ML, Manojlovic Z, Bolaños-Guzmán CA. Nicotine exposure during adolescence induces a depression--like state in adulthood. Neuropsychopharmacology. 2009;34:1609–1624.
  • 28- Kendler KS, Neale MC, Sullivan P, Corey LA, Gardner CO, Prescott CA. A population-based twin study in women of smoking initiation and nicotine dependence. Psychol Med. 1999;29:299–308.
  • 29- de Kloet ER, Derijk RH, Meijer OC. Therapy Insight: is there an imbalanced response of mineralocorticoid and glucocorticoid receptors in depression? Nature clinical practice Endocrinology & metabolism. 2007;3:168–179.
  • 30- McCormick CM, Mathews IZ, Thomas C, Waters P. Investigations of HPA function and the enduring consequences of stressors in adolescence in animal models. Brain Cogn. 2010;72:73–85.
  • 31- Koolhaas JM, de Boer SF, Coppens CM, Buwalda B. Neuroendocrinology of coping styles: towards understanding the biology of individual variation. Frontiers in Neuroendocrinology. 2010;31:307–321.
  • 32- Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003;301:386–389.
  • 33- Hansson AC, Cippitelli A, Sommer WH, Fedeli A, Björk K, Soverchia L, Terasmaa A, Massi M, Heilig M, Ciccocioppo R. Variation at the rat Crhr1 locus and sensitivity to relapse into alcohol seeking induced by environmental stress. Proc Natl Acad Sci USA. 2006;103:15236–15241.
  • 34- Sora I, Li B, Igari M, Hall FS, Ikeda K. Transgenic mice in the study of drug addiction and the effects of psychostimulant drugs. Ann N Y Acad Sci. 2010;1187:218–246.
  • 35- Schreck CB. Stress and fish reproduction: the roles of allostasis and hormesis. General and Comparative Endocrinology. 2010;165:549–556.
  • 36- Gallo VP, Civinini A. Survey of the adrenal homolog in teleosts. Int Rev Cytol. 2003;230:89–187.
  • 37- Höglund E, Kolm N, Winberg S. Stress-induced changes in brain serotonergic activity, plasma cortisol and aggressive behavior in Arctic charr (Salvelinus alpinus) is counteracted by L-DOPA. Physiol Behav. 2001;74:381–389.
  • 38- Øverli Ø, Korzan WJ, Larson ET, Winberg S, Lepage O, Pottinger TG, Renner KJ, Summers CH. Behavioral and neuroendocrine correlates of displaced aggression in trout. Horm Behav. 2004;45:324–329.
  • 39- Ruiz-Gomez MdL, Kittilsen S, Höglund E, Huntingford FA, Sørensen C, Pottinger TG, Bakken M, Winberg S, Korzan WJ, Overli O. Behavioral plasticity in rainbow trout (Oncorhynchus mykiss) with divergent coping styles: when doves become hawks. Horm Behav. 2008;54:534–538.
  • 40- Alsop D, Vijayan M. The zebrafish stress axis: molecular fallout from the teleost-specific genome duplication event. General and Comparative Endocrinology. 2009;161:62–66.
  • 41- Aluru N, Vijayan MM. Stress transcriptomics in fish: a role for genomic Cortisol signaling. Gen Comp Endocrinol. 2009;164:142–150.
  • 42- Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington S, Hopkins N. Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci USA. 2004;101:12792–12797.
  • 43- Auperin B, Geslin M. Plasma Cortisol response to stress in juvenile rainbow trout is influenced by their life history during early development and by egg Cortisol content. General and Comparative Endocrinology. 2008;158:234–239.
  • 44- Barcellos L, Ritter F, Kreutz L, Quevedo R, da Silva L, Bedin A, Finco J, Cericato L. Whole- body Cortisol increases after direct and visual contact with a predator in zebrafish, Danio rerio. Aquaculture. 2007;272:774–778.
  • 45- Amsterdam A, Burgess S, Golling G, Chen W, Sun Z, Townsend K, Farrington S, Haldi M, Hopkins N. A large-scale insertional mutagenesis screen in zebrafish. Genes Dev. 1999;13:2713–2724.
  • 46- Barcellos L, Ritter F, Kreutz L, Quevedo R, da Silva L, Bedin A, Finco J, Cericato L. Whole- body Cortisol increases after direct and visual contact with a predator in zebrafish, Danio rerio. Aquaculture. 2007;272:774–778.
  • 47- Barry T, Unwin M, Malison J, Quinn T. Free and total Cortisol levels in semelparous and iteroparous chinook salmon. Journal of Fish Biology. 2001;59:1673–1676.
  • 48- Alsop D, Vijayan MM. Molecular programming of the corticosteroid stress axis during zebrafish development. Comp Biochem Physiol, Part A Mol Integr Physiol. 2009;153:49–54.
  • 49- Barry TP, Malison JA, Held JA, Parrish JJ. Ontogeny of the Cortisol stress response in larval rainbow trout. General and Comparative Endocrinology. 1995;97:57–65.
  • 50- Barton BA. Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and Comparative Biology. 2002;42:517.
  • 51- Bencan Z, Levin ED. The role of alpha7 and alpha4beta2 nicotinic receptors in the nicotine-induced anxiolytic effect in zebrafish. Physiol Behav. 2008;95:408–412.
  • 52- Bencan Z, Sledge D, Levin ED. Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety. Pharmacol Biochem Behav. 2009;94:75–80.
  • 53- Bill BR, Petzold AM, Clark KJ, Schimmenti LA, Ekker SC. A primer for morpholino use in zebrafish. Zebrafish. 2009;6:69–77.
  • 54- Dhabhar FS. Enhancing versus suppressive effects of stress on immune function: implications for immunoprotection and immunopathology. Neuroimmunomodulation. 2009;16:300–317.
  • 55- Engeszer RE, Patterson LB, Rao AA, Parichy DM. Zebrafish in the wild: a review of natural history and new notes from the field. Zebrafish. 2007;4:21–40.
  • 56- Alsop D, Vijayan MM. Development of the corticosteroid stress axis and receptor expression in zebrafish. Am J Physiol Regul Integr Comp Physiol. 2008;294:R711–719.
  • 57- Alderman SL, Bernier NJ. Ontogeny of the corticotropin-releasing factor system in zebrafish. General and Comparative Endocrinology. 2009;164:61–69.
  • 58- Ramsay JM, Watral V, Schreck CB, Kent ML. Pseudoloma neurophilia infections in zebrafish Danio rerio: effects of stress on survival, growth, and reproduction. Dis Aquat Org. 2009;88:69–84.
  • 59- Ramsay J, Feist G, Varga Z, Westerfield M, Kent M, Schreck C. Whole-body cortisol is an indicator of crowding stress in adult zebrafish, Danio rerio. Aquaculture. 2006;258:565–574.
  • 60- von Krogh K, Sørensen C, Nilsson G, Overli O. Forebrain cell proliferation, behavior, and physiology of zebrafish, Danio rerio, kept in enriched or barren environments. Physiology & behavior. 2010
  • 61- Gerlai R. Zebrafish antipredatory responses: a future for translational research? Behav Brain Res. 2010;207:223–231.
  • 62- Cachat J, Canavello P, Elegante M, Bartels B, Hart P, Bergner C, Egan R, Duncan A, Tien D, Chung A, Wong K, Goodspeed J, Tan J, Grimes C, Elkhayat S, Suciu C, Rosenberg M, Chung KM, Kadri F, Roy S, Gaikwad S, Stewart A, Zapolsky I, Gilder T, Mohnot S, Beeson E, Amri H, Zukowska Z, Soignier RD, Kalueff AV. Modeling withdrawal syndrome in zebrafish. Behav Brain Res. 2010;208:371–376.
  • 63- Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF, Elkhayat SI, Bartels BK, Tien AK, Tien DH, Mohnot S, Beeson E, Glasgow E, Amri H, Zukowska Z, Kalueff AV. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res. 2009;205:38–44.
  • 64- Hinton DE, Kullman SW, Hardman RC, Volz DC, Chen P-J, Carney M, Bencic DC. Resolving mechanisms of toxicity while pursuing ecotoxicological relevance? Mar Pollut Bull. 2005;51:635–648.
  • 65- Craig PM, Hogstrand C, Wood CM, McClelland GB. Gene expression endpoints following chronic waterborne copper exposure in a genomic model organism, the zebrafish, Danio rerio. Physiol Genomics. 2009;40:23–33.