Fotovoltaik Uygulamalar İçin Kararlı Tek Eksenli Bir Güneş Takip Sistemi Tasarımı ve Uygulaması

Hücre üretim teknolojilerindeki iyileştirmelere rağmen, modüllerin enerji dönüştürme oranlarının hâlâ istenen düzeyde olmaması fotovoltaik sistemlerin en önemli olumsuzluklarından biridir. Bu amaçla bir fotovoltaik sistemden daha yüksek enerji eldesi için güneş takip sistemleri kullanılmaktadır. Literatürde bu alanda yapılmış birçok çalışma olmasına rağmen, bu çalışmaların büyük bir kısmında genellikle takip sisteminin yazılım ve devre kısmına odaklanılmakta veya oluşturulan küçük boyutlu prototipler üzerinde gerçekleştirilen kısa vadeli test sonuçlarının sunulmasıyla yetinilmektedir. Fotovoltaik sistemlerin uzun yıllar boyunca farklı atmosferik değişimlere maruz kalarak çalıştığı göz önüne alındığında, bu sistemlerle beraber kullanılan güneş takip sistemlerinin farklı hava durumları altında uzun vadeli testlere tabi tutulmaları en doğru yaklaşım olacaktır. Bu amaçla bu çalışmada, tek eksenli bir güneş takip sistemi tasarlanmış ve üretilmiştir. Uygulamanın sürücü devresi ve mekanik aksamıyla ile ilgili tüm detaylar açık bir şekilde belirtilmiştir. Güneş izleyici sistem sayesinde günlük olarak elde edilen verim artışı, ilgili güne ait radyasyon ortalaması ve güneşlenme süresine göre değişmektedir. Sonuçlara göre güneş izleyici sistemin yıllık bazda %30.84 verim artışı sağladığı kaydedilmiştir.

Design and Implementation of a Stable Single Axis Solar Tracking System for Photovoltaic Applications

Despite the improvements in cell production technologies, the energy conversion rates of the modules are still not at the desired level and this is one of the most important disadvantages of photovoltaic systems. For this purpose, solar tracking systems are used to obtain the highest energy from a photovoltaic system. Although there are many studies in this field available in the current literature, most of these studies generally focus on the software and circuit parts of the tracking system or focus on the short-term test results carried out on the small-sized prototypes created. Considering the fact that photovoltaic systems are generally exposed to different atmospheric changes for many years, it would be the best approach to testify the solar tracking systems under long-term tests for different weather conditions. For this purpose, a single-axis solar tracking system was designed and produced in this study. All details about the driver circuit and the mechanics of the system are clearly stated. Thanks to the solar tracker system, the daily increase in efficiency varies according to the radiation average and sunshine duration of the relevant day. According to the findings, the solar tracker system increases annual yield by 30.84%.

___

  • Aydın, A., Kayri, İ., & Aydin, H. (2022a). Determination of the performance improvement of a PV/T hybrid system with a novel inner plate-finned collective cooling with Al2O3 nanofluid. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(4), 9663-9681. doi:10.1080/15567036.2022.2136801
  • Aydın, A., Kayri, İ., & Aydın, H. (2022b, October). The Efects of TiO2 Nanofluid on Efficiency and Heat Transfer Indicators of an Inner-Plate Finned Collective Cooling in a PV/T Hybrid System. 2022 Global Energy Conference (GEC), Batman, Türkiye. doi:10.1109/GEC55014.2022.9986908
  • Barbón, A., Fernández-Rubiera, J. A., Martínez-Valledor, L., Pérez-Fernández, A., & Bayón, L. (2021). Design and construction of a solar tracking system for small-scale linear Fresnel reflector with three movements. Applied Energy, 285, 116477. doi:10.1016/j.apenergy.2021.116477
  • Bhakre, S. S., Sawarkar, P. D., & Kalamkar, V. R. (2021). Performance evaluation of PV panel surfaces exposed to hydraulic cooling–A review. Solar Energy, 224, 1193-1209. doi:10.1016/j.solener.2021.06.083
  • Bradshaw, A. M., Reuter, B., & Hamacher, T. (2013). The potential scarcity of rare elements for the Energiewende. Green, 3(2), 93-111. doi:10.1515/green-2013-0014
  • Dehghanimadvar, M., Egan, R., & Chang, N. L. (2022). Economic assessment of local solar module assembly in a global market. Cell Reports Physical Science, 3(2), 100747. doi:10.1016/j.xcrp.2022.100747
  • Du, X., Li, Y., Wang, P., Ma, Z., Li, D., & Wu, C. (2021). Design and optimization of solar tracker with U-PRU-PUS parallel mechanism. Mechanism and Machine Theory, 155, 104107. doi:10.1016/j.mechmachtheory.2020.104107
  • Fayaz, H., Khan, S. A., Saleel, C. A., Shaik, S., Yusuf, A. A., Veza, I., ... & Alarifi, I. M. (2022). Developments in nanoparticles enhanced biofuels and solar energy in Malaysian perspective: A Review of state of the art. Journal of Nanomaterials, 2022, 809157. doi:10.1155/2022/8091576
  • Gabe, I. J., Bühler, A., Chesini, D., & Frosi, F. (2017, April). Design and implementation of a low-cost dual-axes autonomous solar tracker. 2017 IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). doi:10.1109/PEDG.2017.7972522
  • Gorjian, S., Ebadi, H., Trommsdorff, M., Sharon, H., Demant, M., & Schindele, S. (2021). The advent of modern solar-powered electric agricultural machinery: A solution for sustainable farm operations. Journal of Cleaner Production, 292, 126030. doi:10.1016/j.jclepro.2021.126030
  • Green, M. A., Emery, K., King, D. L., Igari, S., & Warta, W. (2005). Solar cell efficiency tables (version 25). Progress in Photovoltaics: Research and Applications, 13(1), 49-54. doi:10.1002/pip.598
  • Green, M., Dunlop, E., Hohl‐Ebinger, J., Yoshita, M., Kopidakis, N., & Hao, X. (2021). Solar cell efficiency tables (version 57). Progress in Photovoltaics: Research and Applications, 29(1), 3-15. doi:10.1002/pip.3371
  • Gupta, S., Kalika, S., & Luisito, R. C. (2012). Maximum power point tracking for solar PV system. Applied Mechanics and Materials, 110, 2034-2037. doi:10.4028/www.scientific.net/AMM.110-116.2034
  • Hammoumi, A. E., Motahhir, S., Ghzizal, A. E., Chalh, A., & Derouich, A. (2018). A simple and low‐cost active dual‐axis solar tracker. Energy Science & Engineering, 6(5), 607-620. doi:10.1002/ese3.236
  • International Energy Agency. (2021). IEA key world energy statistics 2021. https://www.iea.org/reports/key-world-energy-statistics-2021/supply Erişim tarihi: 03.02.2023
  • Jaafar, S. S., & Maarof, H. A. (2022). influence of micro-controller-based single axis solar tracker system on solar panel’s performance: Case study. The NTU Journal of Renewable Energy, 3(1), 33 43. doi:10.56286/ntujre.v3i1.347
  • Kayri, I., & Gencoglu, M. T. (2019). Predicting power production from a photovoltaic panel through artificial neural networks using atmospheric indicators. Neural Computing and Applications, 31, 3573-3586. doi:10.1007/s00521-017-3271-6
  • Kayri, İ., & Ayyıldız, S. (2021, Kasım). Fotovoltaik sistemlerde hücre sıcaklığının panel verimi üzerindeki etkisinin deneysel olarak araştırılması. Uluslararası Mühendislik, Doğa ve Sosyal Bilimler Sempozyumu (ISENS-21), Batman, Türkiye.
  • Kuttybay, N., Saymbetov, A., Mekhilef, S., Nurgaliyev, M., Tukymbekov, D., Dosymbetova, G., ... & Svanbayev, Y. (2020). Optimized single-axis schedule solar tracker in different weather conditions. Energies, 13(19), 5226. doi:10.3390/en13195226
  • Li, S. S. (2012). Semiconductor Physical Electronics. New York, USA: Springer Science & Business Media.
  • Motahhir, S., Hammoumi, A. E., Ghzizal, A. E., & Derouich, A. (2019). Open hardware/software test bench for solar tracker with virtual instrumentation. Sustainable Energy Technologies and Assessments, 31, 9-16. doi:10.1016/j.seta.2018.11.003
  • Oberbeck, L., Alvino, K., Goraya, B., & Jubault, M. (2020). IPVF's PV technology vision for 2030. Progress in Photovoltaics: Research and Applications, 28(11), 1207-1214. doi:10.1002/pip.3305
  • Ogbomo, O. O., Amalu, E. H., Ekere, N. N., & Olagbegi, P. O. (2017). A review of photovoltaic module technologies for increased performance in tropical climate. Renewable and Sustainable Energy Reviews, 75, 1225-1238. doi:10.1016/j.rser.2016.11.109
  • Pawar, P., Pawale, P., Nagthane, T., Thakre, M., & Jangale, N. (2021). Performance enhancement of dual axis solar tracker system for solar panels using proteus ISIS 7.6 software package. Global Transitions Proceedings, 2(2), 455-460. doi:10.1016/j.gltp.2021.08.049
  • Price, S., Margolis, R., Barbose, G., Bartlett, J., Cory, K., Couture, T., ... & James, T. (2010). 2008 solar technologies market report (No. LBNL-3490E). Berkeley, CA, USA: Lawrence Berkeley National Lab. (LBNL). doi:10.2172/983330
  • Prodhan, M. M. H., Hamid, M. K., Hussain, D., & Huq, M. F. (2016). Design, construction and performance evaluation of an automatic solar tracker. Journal of Scientific Research, 8(1), 1-12. doi: 10.3329/jsr.v8i1.23357 doi:10.3329/jsr.v8i1.23357
  • Putra, A. R., Kusumanto, R. D., & Taqwa, A. (2019, February). Minimum power of solar Panel Movement in Solar Tracker System Prototype. Journal of Physics: Conference Series, 1167, 012030. IOP Publishing. doi:10.1088/1742-6596/1167/1/012030
  • Ramkiran, B., Sundarabalan, C. K., & Sudhakar, K. (2021). Sustainable passive cooling strategy for PV module: A comparative analysis. Case Studies in Thermal Engineering, 27, 101317. doi:10.1016/j.csite.2021.101317
  • Ritchie, H., & Roser, M. (2022). Where does our electricity come from? Energy mix. https://ourworldindata.org/electricity-mix Erişim tarihi: 03.02.2023
  • Schön, J., Bissels, G. M., Mulder, P., van Leest, R. H., Gruginskie, N., Vlieg, E., ... & Lackner, D. (2022). Improvements in ultra‐light and flexible epitaxial lift‐off GaInP/GaAs/GaInAs solar cells for space applications. Progress in Photovoltaics: Research and Applications, 30(8), 1003-1011. doi:10.1002/pip.3542
  • Singh, B. P., Goyal, S. K., & Kumar, P. (2021). Solar PV cell materials and technologies: Analyzing the recent developments. Materials Today: Proceedings, 43, 2843-2849. doi:10.1016/j.matpr.2021.01.003
  • Visconti, P., Costantini, P., Orlando, C., Lay-Ekuakille, A., & Cavalera, G. (2015). Software solution implemented on hardware system to manage and drive multiple bi-axial solar trackers by PC in photovoltaic solar plants. Measurement, 76, 80-92. doi:10.1016/j.measurement.2015.08.024
  • Xu, R., Ji, X., Liu, C., Hou, J., Cao, Z., & Qian, H. (2022). Design and control of a wave-driven solar tracker. IEEE Transactions on Automation Science and Engineering, 20(2), 1007-1019. doi:10.1109/TASE.2022.3177353
  • Zaghba, L., Khennane, M., Mekhilef, S., Fezzani, A., & Borni, A. (2022). Experimental outdoor performance assessment and energy efficiency of 11.28 kWp grid tied PV systems with sun tracker installed in saharan climate: A case study in Ghardaia, Algeria. Solar Energy, 243, 174 192. doi:10.1016/j.solener.2022.07.045
  • Zhang, Q., Zhuang, Y., Aierken, A., Song, Q., Yang, X., Zhang, S., ... & Dou, Y. (2022). Probing the displacement damage mechanism in Si, Ge, GaAs by defects evolution analysis. Computational Materials Science, 203, 111084. doi:10.1016/j.commatsci.2021.111084