Tersiyer yaşlı Artova Zile kömürlerinin (Tokat) organik jeokimyasal özellikleri ve hidrokarbon türetim potansiyelleri
Bu çalışma kapsamında, Tokat ilinin batısındaki Zile ve güneybatısındaki Artova ilçeleri sınırlarında belirlenen limnotelmatik depolanma ortamında gelişmiş kömürlerin organik petrografik, organik jeokimyasal özellikleri ve hidrokarbon türetim potansiyeli değerlendirilmiştir. Zile civarında toplam kalınlığı yaklaşık 17 m olan iki kömür damarı açık işletme yöntemiyle işletilmekte ve yakınındaki yerleşim alanlarında kullanılmaktadır. Organik jeokimyasal değerlendirmeler; Rock-Eval Piroliz analizi, GC, GC-MS ve C13 izotop analizlerinden yararlanılarak yapılmış, kömürleri oluşturan organik maddenin miktarı, tipi ve kömürleşme dereceleri belirlenmiştir. Organik petrografi, kömür kalitesi ve olgunlaşma özellikleri nedeniyle çok farklı özellikler sunan Artova ve Zile kömürleri alt-bitümlü kömür olarak sınıflandırılmıştır. Rock-Eval analiz sonuçları, tip II/III karışımı ve tip III kerojeni göstermektedir. Kömürlerin organik bileşimleri daha çok hüminit grubu maserallerinden, daha az oranlarda ise inertinit ve liptinit gruplarından oluşmaktadır. Kömürler yüksek kül ve kükürt bileşimine sahiptir. Maseral bileşimine göre bu kömürlerinin çökelim ortamı orman bataklığı, ya da bir göldür. Kömürlerin organik madde miktarı ve tipi açısından petrolden ziyade gaz türetim potansiyeli bulunmaktadır.
Organic geochemical characteristics and hydrocarbon generation potential of the Artova and Zile tertiary coals (Tokat)
The organic-petrographic and organic-geochemical characteristics and hydrocarbon-generation potential of coals of the Tokat Province, formed in a limnotelmatic depositional environment– namely, from Zile and Artova counties, in the western and southwestern parts of the province, respectively – were evaluated within the scope of this study. Two coals seams with a total thickness of about 17 m in the vicinity of Zile are being mined by open-pit method and are used in nearby population centers. Organic-geochemical evaluations were done using Rock-Eval pyrolysis and GC, GC-MS and C13-isotopic analyses such that the amounts and types, as well as the degree of coalification, of the organic matter were determined. On the basis of organic-petrographic, coal-quality and maturation characteristics, the highly variable Artova and Zile coals are classified as sub-bituminous. The results of Rock-Eval analysis indicate type II/III and type III kerogen. The organic components of the coals are predominantly huminite-group macerals and, to a lesser extent, are from the inertinite and liptinite groups. Furthermore, the coals have high ash and sulfur contents. On the basis of maceral contents, the depositional environment of these coals was either a forest swamp or lake. The organic-matter contents and types suggest potential for gas generation rather than for petroleum generation
___
- Akyazı, M. ve Tunç, M., 1992. Zile (Tokat) yöresinin stratigrafisi. Türkiye Jeoloji Bülteni, 35, 35-46.
- Amijaya, H., Schwarzbauer, J., and Littke, R., 2006. Organic geochemistry of the Lower Suban coal seam, South Sumatra Basin, Indonesia: Palaeoecological and thermal metamorphism implications. Organic Geochemistry, 37, 261-279.
- ASTM (American Society for Testing and Materials) D5307-97, 2002. Standard Test Method for Determination of Boiling Range Distribution of Crude Petroleum by Gas Chromatography. In: 2004 Annual Book of ASTM Standards, Gaseous Fuels; Coal and Coke, vol. 05.06. ASTM, Philadelphia, PA, pp. 245–247.
- ASTM (American Society for Testing and Materials) D3174, 2004a. Standard method for ash in the analysis sample of coal and coke from coal. In: 2004 Annual Book of ASTM Standards, Gaseous Fuels; Coal and Coke, vol. 05.06. ASTM, Philadelphia, PA, pp. 322–326.
- ASTM (American Society for Testing and Materials) D3175, 2004b. Standard method for volatile matter in the analysis sample of coal and coke. In: 2004 Annual Book of ASTM Standards, Gaseous Fuels; Coal and Coke, vol. 05.06. ASTM, Philadelphia, PA, pp. 327-330.
- ASTM (American Society for Testing and Materials) D3302, 2004c. Standard method for total moisture in coal. In: 2004 Annual Book of ASTM Standards, Gaseous Fuels; Coal and Coke, vol. 05.06. ASTM, Philadelphia, PA, pp. 352-358.
- ASTM (American Society for Testing and Materials) D5373, 2004d. Standard test methods for instrumental determination of carbon, hydrogen and nitrogen in laboratory samples of coal and coke. In: 2004 Annual Book of ASTM Standards, Gaseous Fuels; Coal and Coke, vol. 05.06. ASTM, Philadelphia, PA, 5pp. 04–507.
- Bechtel, A., Gruber, W., and Sachsenhofer, R.F., 2003. Depositional environment of the Late Miocene Hausruck lignite (Alpine Foreland Basin): insights from petrography, organic geochemistry, and stable carbon isotopes. International Journal of Coal Geology, 53, 153-180.
- Bechtel, A., Saschsenhofer, R.F., Zdravkov, A., Kostova, I., and Gratzer, R., 2005. Influence of floral assemblage, facies and diagenesis on petrography and organic geochemistry of the Eocene Bourgas coal and the Miocene Maritza-East lignite (Bulgaria). Organic Geochemistry, 36, 1498-1522.
- Behar, F., Beaumont, V., and Penteado, H.L., 2001. Rock-Eval 6 Technology: Performances and Developments. Oil & Gas Science and Technology – Review of French Institute of Petroleum, 56 (2), 111-134.
- Bottinga, Y., 1969. Calculated fractination factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogenwater vapor. Geochimica et Cosmochimica Acta, 33, 49-64.
- Bray, E.E., and Evans, E.D., 1961. Distribution of n-paraffins as a clue for recognition of source beds. Geochimica et Cosmochimica Acta, 22, 2-15.
- Calder, J.H., Gibling, M.R., and Mukhopadhyay, K., 1991. Peat formation in a Westphalian B piedmont setting, Cumberland basin, Nova Scotia: implications for the maceral-based interpretation of rheotrophic and raised paleomires. Bulletin de la Societe Geologique de France, 162, 283-298.
- Connan, J., 1993. Molecular geochemistry in oil exploration. In: Applied Petroleum Geochemistry, M.L. Bordenave (ed.), Editions Technip, Paris, pp. 175-204.
- Coşar, Z., Coşar, N., Polat, N. ve Minaz, M., 1985. Tokat ili linyit olanakları. MTA Rapor No 7829, Ankara (yayımlanmamış). Cranwell, P.A., 1977. Organic geochemistry of Cam Loch (Sutherland) sediments. Chemical Geology, 20, 205-221.
- Diessel, C.F.K., 1992. Coal-Bearing Depositional Systems, Springer Verlag, Berlin.
- Dydik, B.M., Simoneit, B.R.T., Brassell, S.C., and Eglinton, G., 1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272, 216-222.
- Eglinton, G., and Hamilton, R.J., 1967. Leaf epicuticular waxes. Science, 156, 1322- 1335.
- Fowler, M.G., Gentzis, T., Goodarzi F., and Foscolos A.E., 1991. The petroleum potential of some Tertiary lignites from northern Greece as determined using pyrolysis and organic petrological techniques. Organic Geochemistry, 17, 805-826.
- Fu, X., Wang, J., Zeng, Y., Li, and Wang, Z., 2009. Geochemical and palynological investigation of the Shengli River marine oil shale (China): Implications for paleoenvironment and paleoclimate. International Journal of Coal Geology, 78 (3), 217-224.
- Gelpi, E., Oro, J., Schneider, H.J., Mann, J., and Oro, J., 1970. Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry, 9, 603-612.
- Gümüşsu, M., 1981. Tokat ili Artova ilçesi kömür jeolojisi. MTA Rapor No. 7029, (yayımlanmamış). Hanson, A.D., Zhang, C., Moldowan, J.M., Liang, D.G., and Zhang, B.M., 2000. Molecular organic geochemistry of the Tarim Basin, Northwest China. AAPG Bulletin, 84, 1109-1128.
- Huang, W.Y., and Meinschein, W.G., 1979. Sterols as ecological indicators. Geochimica et Cosmochimica Acta, 43, 739-745.
- Huang, D., Zhang D., Li J., and Huang X., 1991. Hydrocarbon genesis of Jurassic coal measures in the Turpan Basin, China. Organic Geochemistry, 17, 827-837.
- Hunt, J.M., 1995. Petroleum Geochemistry and Geology, W.H. Freeman and Company, New York.
- ICCP (International Committee for Coal and Organic Petrology), 1998. The new vitrinite classification. Fuel, 77, 349-358.
- ICCP (International Committee for Coal and Organic Petrology), 2001. The new inertinite classification. Fuel, 80, 459-471.
- Katz, B.J., 1984. Source quality and richness of Deep Sea Drilling Site 535 sediments. southeastern Gulf of Mexico. Initial Reports Deep Sea Drilling Project. 77, pp. 445-450.
- Kohli, K.B., Thomas, N.J., Prabhu, B.N., and Misra, K.N., 1994. Simulated petroleum generation studies by hydrous pyrolysis of a Tertiary coal from Northern Cambay Basin of India. Organic Geochemistry, 21, 323-332.
- Korkmaz, S., and Kara Gülbay, R., 2007. Organic geochemical characteristics and depositional environments of the Jurassic coals in the Western Taurus of Southern Turkey. International Journal of Coal Geology, 70 (4), 292-304.
- Lafarqué, E., Marquis, F., and Pilot, D., 1998. Rock-Eval 6 applications in hydrocarbon exploration, Production, and soil contamination studies. Revue De L’Institut Français Du Petrole, 53 (4), 421-437.
- Littke, R., and Leythaeuser, D., 1993. Mineration of oil and gas in coals. In: B.E. Law and D.D. Rice, Editors. Hydrocarbons from coal. AAPG Studies in Geology, 38, 219-236.
- Littke, R., Jendrzejewski, L., Lokay, P., Wang Shuangqing and Rullkötter, J., 1998. Organic geochemistry and depositional history of Barremian - Aptian boundary interval in the Lower Saxony Basin, northern Germany. Cretaceous Research, 19, 581-614
- Lu, S.T., and Kaplan, I.R., 1992. Diterpanes, triterpanes, steranes, and aromatic hydrocarbons in natural bitumens and pyrolysates from different humic coals. Geochimica et Cosmochimica Acta, 56, 2761-2788.
- Matsumoto, G.I., Akiyama, M.,Watanuki, K., and Torii, T., 1990. Unusual distribution of long-chain n-alkanes and n-alkenes in Antarctic soil. Organic Geochemistry, 15, 403-412.
- Meyers, P.A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 114, 289-302.
- Moldowan, M., Seifert, W.K., and Gallegos, E.J., 1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bulletin, 69, 1255-1268.
- Mukhopadhyay, P.K., Hatcher, P.G., and Calder, J.H., 1991. Hydrocarbon generation from deltaic and intermontaine fluviodeltaic coal and coaly shale from the Tertiary of Texas and Carboniferous of Nova Scotia. Organic Geochemistry, 17, 765-784.
- Mukhopadhyay, P.K., Wade, J.A., and Kruge, M.A., 1995. Organic facies and maturation of Jurassic/Cretaceous rocks and possible oil-source rock correlation based on pyrolysis of asphaltenes. Scotian Basin, Canada. Organic Geochemistry, 22 (1), 85-104.
- Narin, R. ve Göçmen, D., 1982. Tokat ili Artova ilçesindeki Kömürlü alanın sondajlı arama raporu, MTA Rapor No. 7304, Ankara (yayımlanmamış).
- Özcan, A., Erkan, A., Keskin, A., Keskin, E., Oral, A., Özer, S., Sümengen, M. ve Tekeli, O., 1980. Kuzey Anadolu Fayı ile Kırşehir Masifi arasının temel jeolojisi: MTA Rapor No. 6722, Ankara (yayımlanmamış). Peters, K.E., 1986. Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis. AAPG Bulletin, 70, 318-329.
- Peters, K.E., and J.M. Moldowan., 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prenctile-Hall. Englewood Cliffs. NJ.
- Peters K.E., and Cassa M.R., 1994. Applied source rock geochemistry. In: The Petroleum System-from Source to Trap, L.B. Magoon and W.G. Dow (eds.), AAPG Memoir 60, pp. 93-120.
- Peters, K.E., Snedden, J.W., Sulaeman, A., Sarg, J.E., and Enrico, R.J., 2000. A new geochemical-sequence stratigraphic model for the Mahakam Delta and Makassar Slope, Kalimantan, Indonesia. AAPG Bulletin, 84, 12-44.
- Peters, K.E., Walters, C.C., and Moldowan, J.M., 2004. The Biomarker Guide. Biomarkers and Isotopes in Petroleum Exploration and Earth History (Second Edition), Cambridge, pp. 475-1155.
- Petersen, H.I., 2006. The petroleum generation potential and effective oil window of humic coals related to coal composition and age. International Journal of Coal Geology, 67, 221-248.
- Petersen, H.I., Tru, V., Nielsen, L.H., Nguyen, A.D., and Nytoft, H.P., 2005. Source rock properties of lacustrine mudstones and coals (Oligocene Dong Ho formation), onshore Song Hong Basin, Northern Vietnam. Journal of Petroleum Geology, 28 (1), 19-38.
- Piedad-Sanchez, N., Suarez-Ruiz, I., Martınez, L., Izart, A., Elie, M., and Keravis, D., 2004. Organic petrology and geochemistry of the Carboniferous coal seams from the Central Asturian Coal Basin (NW Spain). International Journal of Coal Geology, 57, 211-242.
- Powell, T.G., Boreham, J.G., Smith, M., Russell, N., and Cook, J.G., 1991. Petroleum source rock assessment in non-marine sequence: pyrolysis and petrographic analysis of Australian coals and carbonaceous shale. Organic Geochemistry, 17, 375-394.
- Rui, L., and Ritz, G.P., 1993. Studying individual maceral using i.r. microspectroscopy and implication on oil versus gas/condensate proneness and “low-rank” generation. Organic Geochemistry, 20, 695-706.
- Seifert, W.K., and Moldowan, J.W., 1981. Paleoreconstruction by biological markers. Geochimica et Cosmochimica Acta, 45, 783-794.
- Shanmugam, G., 1985. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil. Gippsland Basin, Australia. AAPG Bulletin, 69, 1241-1254.
- Sinninghe Damsté, J. S., Kenig, F., Koopmans, M. P., Köster, J., Schouten, S., Hayes, J. M., and de Leeuw, J. W., 1995. Evidence for gammacerane as an indicator of water column stratification. Geochimica Cosmochimica Acta, 59, 1895- 1900.
- Snowdon, L.R., 1991. Oil from type III organic matter: resinite revisited. Organic Geochemistry, 17 (6), 743-747.
- Stach, E., Mackowsky, M. Th., Teichmüller, M., Taylor, G.H., Chandra, D., and Teichmüller, R., 1982. Stach’s Textbook of Coal Petrology. Gebrüder Borntraeger, Berlin.
- Stasiuk, L.D., Goodarzi, F., and Sadeghi, H.B., 2006. Petrology, rank and evidence for petroleum generation, Upper Triassic to Middle Jurassic coals, Central Alborz Region, Northern Iran. International Journal of Coal Geology, 67, 249-258.
- Sun, Y., Sheng, G., Peng, P., and Fu, J., 2000. Compound-specific analysis as a tool for correlating coal-sourced oils and interbedded shale-sourced oils in coal measures: an example from Turpan Basin. Organic Geochemistry, 31, 1349- 1362.
- Sykes, R., 2001. Depositional and rank controls on the petroleum potential of coaly source rocks. In: K.C. Hill and T. Bernecker. (Eds.), Eastern Australasian Basins Symposium, a Refocused Energy Perspective for the Future, Petroleum Exploration Society of Australia, Special Publication, p. 591-601
- Taylor, G.H., Teichmüller, M., Davis, A., Diessel, C.F.K., Littke, R., and Robert, P., 1998. Organic Petrology. Gebrüder Borntraeger, Berlin.
- Ten Haven, H.L., de Leeuw, J.W., Rullkotter, J., and Sinninghe Damste, J.S., 1987. Restricted utility of the pristane/phytane ratio as a palaeonvironmental indicator. Nature, 330, 641- 643.
- Tissot, B.P., and Welte, D.H., 1984. Petroleum Formation and Occurrence: Springer- Verlag. Berlin.
- Tuncalı, E., Çiftci, B., Yavuz, N., Toprak, S., Koker, A., Aycik, H., Gencer, Z., and Sahin, N., 2003. Chemical and technological properties of Turkish Tertiary coals. General Directorate of Mineral Research and Exploration’s Publication, Ankara.
- Üstüntaş, A. ve İnceöz, M., 1999. Zile (Tokat) batısında Uzunköy çevresinin stratigrafisi, Türkiye Jeoloji Bülteni, 42 (1), 69-83.
- Volkman, J.K., Alexander, R., and Kagi, R.I., 1983. GC-MS characterisation of C27 and C28 triterpanes in sediments and petroleum. Geochimica et Cosmochimica Acta, 47, 1033-1040.
- Waples, D.W., and Machihara, T., 1991. Biomarkers for Geologists - a practical guide to the application of steranes and triterpanes in Petroleum Geology. Tulsa, Oklahoma, AAPG Methods in Exploration Series No. 9.
- Weiss, H.M., Wilhelms, A., Mills, N., Scotchmer, J., Hall, P.B., Lind, K., and Brekke, T., 2000. The Norwegian Industry Guide to Organic Geochemical Analyses. Edition 4.0. Published by Norsk Hydro, Statoil, Geolab Nor, SINTEF Petroleum Research and the Norwegian Petroleum Directorate. 102 pp.
- Wilkins, R.W.T., and George, S.C., 2002. Coal as a source rock for oil: a review. International Journal of Coal Geology, 50, 317-361.
- Yılmaz, A., 1984. Tokat (Dumanlı Dağı) ile Sivas (Çeltek dağı) dolaylarının temel jeoloji özellikleri ve ofiyolitli karışığın konumu. MTA Dergisi, 99-100, 1-18.