Sweep sinyali parametrelerinin korelasyon dalgacığı üzerindeki etkileri

Vibrosismik, sismik aramaların önemli bir yöntemi olup, uygulanan sweep sinyalinin parametreleri yerin derinliklerindeki kaya katmanları ile değişir. Vibrosismik’te sismik verinin frekans aralığının kontrol edilebilmesi son derece faydalıdır. Vibratör, sismik yöntemlerde kullanılan kontrollü bir enerji kaynağıdır. Günümüzde vibrosismik karada yapılan sismik arama çalışmalarında en çok kullanılan ve tercih edilen sismik enerji kaynağıdır. Uygun giriş sinyali, frekansı bir frekans band genişliği içinde değişen sinüzoidal dalga formundadır. Yüksek ayrımlılık ile yeraltı görüntüleri elde etmek için, sweep sinyalinin genliği ve Klauder dalgacığının genliği vibrosismiğin önemli parametreleridir. Bu çalışmada, farklı sweep parametrelerine göre Klauder dalgacık genliğinin değişimleri araştırılmıştır. Testlerde çeşitli sweep sayıları, sweep uzunluğu, pik kuvveti oranı ve sweep band genişliği temel alınarak yapılmıştır. Sonuçlar teorik değerlerle karşılaştırılmış olup, test edilen parametreler atış ve veri işlem aşamalarında değerlendirilmiştir.

The effect of sweep signal parameters on correlation wavelet

Vibroseis is an important seismic exploration method whose sweep signal parameters vary with rock layers deep in the earth. Controlling of sweep signal frequency band is extremely useful method in vibroseis data acquisition. The vibrator is a controlled energy source employed in seismic methods. Nowadays it is widely used and preferable seismic source for land seismic exploration. Suitable input signal is typically a sinusoid that changes frequency within a bandwidth. To obtain high-quality subsurface images, amplitude of the sweep signal and Klauder wavelet is important parameter of vibroseis.In this study, amplitude of Klauder wavelet variations with respect to different sweep parameters are investigated; tests have been made based on a variety of sweep numbers, sweep length, peak force ratio and sweep bandwidth. The results have been compared with theoretical values and the tested parameters are evaluated in the shot and processing domain.

___

  • Anstey, N. A., 1991. Vibroseis. New Jersey Prentice Hall PTR.
  • Chapman, W. L., Brown, G. L., and Fair, D. W., 1981, The vibroseis system: A high-frequency tool, Geophysics, 46, No: 12, 1657-1666.
  • Chiu, S. K., Eick, P. P., and Emmons, C. W., 2005. High fidelity vibratory seismic (HFVS): optimal phase encoding selection, SEG/Houston 2005 Annual meeting.
  • Course Book, 1979. Pelton vibroseis theory training notes, Pelton Company, Inc.
  • Crawford, J. M., Doty, W. E. N., and Lee, M.R., 1960. Continuous signal seismograph, Geophysics, 25, No:1, 95-105.
  • Cunningham A. B., 1979. Some alternate vibrator signals, Geophysics, 44, 1901-1921.
  • Geyer, R. L., 1970. The Vibroseis system of seismic mapping: Canadian Soc. Exploration Geophysicists Jour., v. 6, no. 1, p. 39-57.
  • Goupillaud, P. L., 1976. Signal design in the “vibroseis” technique. SEG., Geophysics, 41, No:6, 1294-1304.
  • Halliburton Geophysical Services, 1981. Vibroseis Theory and Practice. HGS Manual.
  • Klauder J. R., Price A. C., Darlington, S., and Albersheim W. J., 1960. The theory and design of chirp radars. SEG Geophysics Reprint Series, 11, 766-829.
  • Lansley, M., 2009. The case for longer sweeps in vibrator acquisition, SEG Houston-2009 International Exposition and Annual Meeting.
  • Li, X. P., Sollner, W., and Hubral, P., 1995. Elimination of harmonic distortion in vibroseis data, Geophysics, 60, No:2, 503-516.
  • Ugur, F. A. , Turhan, S. , Gören, E. , Gezer, F. , Yegingil, Z. , Sahan, H. , Sahan, M. , Tel, E. And Karahan, G. , 2012, A survey of distribution of terrestrial Radionuclides in surface soil samples in and around the Osmaniye province, Turkey. Radiation Protection Dosimetry (2012), pp. 1–7. doi:10.1093/rpd/ncs259
  • Pann, K., 1986. Vibratory signal sweep seismic prospecting method and apparatus, US patent (19), patent number: 4.598.392.
  • Rietsch, E., 1977. Computerized analysis of Vibroseis signal similarity, Geop. Pros, 25, 541-552.
  • Rietsch, E., 1981. Reduction of harmonic distortion in vibratory source records, Geop. Pros, 29, 178-188.
  • Sakallioglu, Y., Gureli, O., and Basar, H. S., 2007. Vibrosismik. Altan Özyurt Matbaacılık Ltd. Şti. Ankara.
  • Sallas, J. J., Corrigan, D., and Allen, K. P., 1998. High fidelity vibratory source seismic method with source separation, US patent (19), patent number: 5.721.710
  • Sarioglu, A., and Gureli, O., 2005. Parameters affecting amplitudes of wavelet associated with vibroseismic data. 15th International Petroleum and Natural Gas Congress and Exhibition of Turkey (in Turkey).
  • Sherrif, R. E., 1990. Encyclopaedic dictionary of exploration geophysics, SEG press.
  • Seriff, A. J., and Kim, W. H., 1970. The effect of harmonic distortion in the use of vibratory surface sources, Geophysics, 35, No: 2, 234-246.
  • Tantawy, T., and Norotte, C., 1987. Evaluation of risks with vibrators: a preliminary approach, SEG Technical Program Expanded Abstracts 6.
  • Thomas, B. J., and Heath, B. J., 1985. Seismic vibrator control system, US patent (19), patent number: 4.493.067.
  • Xianguo, H., Shujie, A., Xinquan, W., and Meng, S., 2006. Application of splitting vibroseis sweeps to different VPs in 3-D seismic exploration, New Orleans 2006 Annual Meeting.
  • Yildiz, H., Tufan, E. and Çevikbas¸, M., 2003, Osmaniye İlinin jeolojisi, Maden Tetkik ve Arama Genel Müdürlüğü Doğu Akdeniz Bölge Müdürlüğü (in Turkish). http://www.mta.gov.tr/v2.0/bolgeler/adana/bolgesel-jeoloji/jeoloji-osmaniye.pdf, 12.02.2020.