Marmara bölgesinde ampirik Green fonksiyon yöntemiyle deprem benzeşimlerinin elde edilmesi

Bu makalenin temel amacı, jeolojik ve tektonik olarak karmaşık özellikler gösteren dolayısıyla oldukça heterojen bir kabuk yapısına sahip Marmara bölgesinde meydana gelmiş üç adet orta büyüklükte depremin benzeşimini elde etmektir. Deprem benzeşimlerinin hesaplanmasında Hutchings ve Wu (1990) tarafından geliştirilen Ampirik Green Fonksiyon (AGF) tabanlı bir yöntem kullanılmıştır. Bu sayede, AGF yönteminin özellikle Marmara bölgesi gibi karmaşık jeolojik özellikler gösteren bir bölgede yer hareketi dalga formlarının modellenmesindeki başarısı değerlendirilmiştir. Kullanılan yöntem, basit yırtılma modelleri ve bölgede kaydedilmiş küçük depremleri ani etkili nokta kaynak kabulüyle ampirik Green fonksiyonlar olarak kullanarak, deprem yer hareketi benzeşimlerinin elde edilebileceği esasına dayanır. Depreme dayanıklı yapı tasarımında performansa dayalı tasarım yaklaşımının benim- senmesi ile birlikte, kuvvetli yer hareketinin benzeşiminin elde edilmesi konusu önem kazanmıştır. Bunun en önemli sebebi, zaman ortamında doğrusal olmayan dinamik analizlerde girdi olarak kullanılan sentetik akselerogramlara duyulan gereksinimdir. Benzeşimi elde edilen üç depremde (Mw≈5) Kuzey Anadolu Fay Zonunun (KAFZ) Marmara Denizi içindeki farklı uzantıları boyunca oluşmuştur. Bunlardan ilki KAFZ’nun Marmara denizinin kuzeyinden geçen kolu üzerinde, diğeri Gemlik Körfezini kesen orta kol, sonuncusu ise Kuş Gölü civarında KAFZ’nun Marmara denizinin güneyindeki karasal alanlardan geçen güney kolu üzerinde meydana gelmiştir. Çalışmada kullanılan depremler Kandilli Rasathanesi ve Deprem Araştırma Enstitüsünün (KRDAE) işlettiği geniş bant sismometre ağı tarafından kaydedilmiştir. Modellemeler, ana şokun ve en az bir artçı şokun (2.83.6) kaydedildiği beş istasyonda toplamda on farklı istasyon kullanılarak yapılmıştır. Kayıtçı istasyonlar ile depremler arasındaki mesafe 17 km ile 121 km arasında, modellenen deprem ile modellemede AGF olarak kullanılan depremlerin hiposantırları arasındaki mesafe ise 0.73 km ile 1.64 km arasında değişmektedir. Kaydedilmiş ve benzeşimi elde edilmiş dalga formlarının benzerlikleri P dalgası ilk va- rışları, S-P dalgalarının varışlarındaki zaman farklılığı, kayıt süresi, maksimum yer hızı, Fourier spektrumu ve enerji dağılımları gibi farklı parametreler açısından incelenmiştir. Elde edilen sonuçlar özellikle heterojen kabuk yapısına sahip Marmara bölgesi gibi alanlarda, AGF yönteminin yer hareketi benzeşimlerinin elde edilmesinde kullanılabilecek uygun bir yöntem olduğunu doğrulamaktadır.

Earthquake simulation studies for the Marmara region using empirical Green’s functions method

The main purpose of this article is to simulate three mid-sized earthquakes that occurred in Marmara Sea region, which has complex geologic and tectonic characteristics resulting in heterogeneous crustal structure. In the calculation of earthquake simulations, the method based on empirical Green’s function (EGF) developed by Hutchings and Wu (1990) is used. In this way, we evaluate the achievements in simulating ground motion waveforms using empirical Green’s function method especially for Marmara region where complex geologic structure exists. The main assumption of the method that simple rupture models and small sized earthquakes (impulsive point source event) recorded in the region can be used as an empirical Green’s functions to simulate earthquake ground motions. Accurate estimation of strong motion time history simulation is essential to establishing the recent technology of the earthquake-resistant design and performance based design of structure to reduce earthquake damage. The main reason of this, non-linear dynamic analysis of structures in time domain needs synthetic accelerograms as an input. We simulate three earthquakes (Mw≈5) that occurred along three different extensions of the North Anatolian Fault Zone (NAFZ) inside of the Marmara Sea. The first one occurred on the northern branch of the NAFZ, in northern part of the Marmara Sea, the second one was along the mid-branch of NAFZ that bissects the Gulf of Gemlik and the last one took place on the southern branch of NAFZ in the vicinity of Kus Lake south of the terrestrial areas of the Marmara Sea. Earthquakes used in the study were recorded by broadband seismometer network operated by Kandilli Observatory and Earthquake Research Institute (KOERI). Modelling was made for each earthquake using by five stations, each of which recorded at least one after shock and one main shock, in total ten stations. The distance between recording stations and earthquake hypocenters ranged from 17 km to 121 km. The distance between the simulated earthquake hypocenter and EGF hypocenter ranged from 0.73km to 1.64 km. Similarities between recorded and simulated waveforms were investigated in terms of different parameters such as first arrivals of P waves, time differences between S and P wave arrivals, recording duration, maximum ground velocity, Fourier spectrum and energy distribution. The results confirm that empirical Green’s function method is an appropriate method to obtain ground motion simulations especially in areas such as Marmara region which has a heterogeneous crust structure.

___

  • Adatepe, F.M., 1988. Marmara Denizi Jeofizik Verilerinin Değerlendirilmesi. İ.Ü. Deniz Bilimleri ve Coğrafya Enstitüsü, Doktora Tezi, İstanbul (Türkçe).
  • Aki, K., Richards, P. G., 1980. Quantitative Seis- mology, Theory and Methods, Volumes I and II. W. H. Freeman and Company, San Francisco, CA.
  • Alpar, B., Yaltırak, C., 2000. Tectonic setting of eastern Marmara Sea. NATO Advanced Research Seminar, İstanbul, Abstracts, 9-10.
  • Ambraseys N. N., Finkel, C., 1991. Long-Term Seismicity of Istanbul and of the Marmara Sea Region. Terra Nova, 3, 527- 539.
  • Ambraseys, N.N., Jackson, J.A., 2000. Seismicity of Sea of Marmara (Turkey) since 1500, Geophys J Int, 141, F1–F6.
  • Ambraseys, N. N., 2001a. The earthquake of 10 July 1894 in the Gulf of Izmit (Turkey) and its relation to the earthquake of 17 August 1999. J Seismology, 5, 117–128.
  • Ambraseys, N. N., 2001b. The earthquake of 1509 in Sea of Marmara, Turkey, revisited. Bull Seismol Soc Am, 91, 1397– 1416.
  • Ambraseys, N. N., 2002a. The seismic activity of the Marmara Sea Region over the last 2000 years. Bull Seismol Soc Am, 92, 1–18.
  • Ambraseys, N. N., 2002b. Seismic sea-waves in the Marmara Sea region during the last 20 centuries. J Seismology, 6, 571–578.
  • Ambraseys, N. N., 2006. Comparison of frequency of occurrence of earthquakes with slip rates from long term seismicity data: The cases of Golf of Corinth, Sea of Marmara and Dead Sea Fault Zone. Geophys J. Int, 165, 516-526.
  • Armijo, R., Meyer, B., Hubert, A. & Barka, A., 1999. Westward propagation of the North Anatolian Fault into the northern Aegean: timing and kinematics, Geology, 27, 267–270.
  • Armijo, R., Meyer, B., Navarro, S., King, G., Barka, A., 2002. Asymmetric slip partitioning in the Sea of Marmara pull-apart: a clue to propagation processes of the North Anatolian Fault? Terra Nova, 14, 80–86.
  • Armijo, R., Pondard, N.,Meyer, B., Uçarkuş, G., Lepinay, M.B., Malavieille, J., Dominguez, S., Gustcher, M.A., Schmidt, S., Beck, C., Çağatay, N., Çakır, Z., İmren, C., Eris, K., Natalin, B., Öalaybey, S., Tolun., Lefevre, I., Seeber, L., Gasperini, L., Rangin, C., Emre, Ö., Sarıkavak, K., 2005. Submarine fault scarps in the Sea of Marmara pullapart (North Anatolian Fault): implications for seismic hazard in Istanbul. Geochemistry Geophyics Geosystems.,6, 6, Q06 009, doi:10.1029/2004GC000896.
  • Atakan, K., Ojeda, A., Meghraoui, M., Barka, A., Erdik, M., Bodare, A., 2002. Seismic hazard in Istanbul following the 17 August 1999 Izmit and 12 November 1999 Düzce earthquakes. Bul. Seis. Soc. Am., 92, 466-482.
  • Barış, S., Nakajima, J., Hasegawa, A., Honkura, Y., Ito, A., Ucer, B., 2005. Three dimensional structure of Vp, Vs and Vp/Vs in the upper crust of the Marmara Region, NW Turkey. Earth Planets Space, 57, 1019-1038.
  • Barka, A., Kadinsky Cade, K., 1988. Strike-slip fault geometry in Turkey and its influence on earthquake activity. Tectonics, 7, No:3, 663-684.
  • Barka, A. A., 1992. The North Anatolian Fault. Annales Tectonicae. VI,164-195.
  • Başbakanlık Afet ve Acil Durum Yönetimi Deprem Dairesi Başkanlığı, 2011. http:// www.deprem.gov.tr., Aylık deprem raporu (Temmuz 2011), 20 Şubat 2014.
  • Becel, A., Laigle, M., Voogd, B., Hirn, A., Taymaz, T., 2009. Moho, crustal architecture and deep deformation under the North Marmara Trough, from the SEIS- MARMARA Leg 1 offshore-onshore reflection-refraction survey, Tectonoph- yics, 467, 1–21.
  • Becel, A., Laigle, M., de Voogd, B., Hirn, A., Taymaz, T., Yolsal-Cevikbilen, S., Shimamura, H., 2010. North Marmara Trough architecture of basin infill, basement and faults, from PSDM reflection and OBS refraction seismics, Tectonoph- ysics, 490, 1–14.
  • Bekler, F. N., Özel, N. M., Birgören, G., 2010. The Fault Characteristics and the Rup- ture model of the Recent Moderate Earthquakes in Southern Marmara Region. EGU General Assembly, Geophysical Research Abstracts Vol. 12, EGU2010-11232-2.
  • Biryol, C.B., Zandt, G., Beck, S.L., Ozacar, A.A., Adıyaman, H.E., Gans, C., 2010. She- ar wave splitting along a nascent plate boundary: the North Anatolian Fault Zone, Geophys. J. Int., 181, 1201–1213, doi:10.1111/j.1365-246X.2010.04576.x
  • Brune, J.N., 1970. Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes. J. Geophys. Res.,v. 75, No. 26, 4997–5010.
  • Caceci, M.S., W.P., Cacheris., 1984. Fitting curves to data, Byte Magazine, May, 340- 360.
  • Carton, H., 2005. Etudes tectonics en Mediterranee orientale par analyse de donn ́ees de sismique reflexion: Mer de Marmara Bassin de Cinarcık et merge du Liban, PhD thesis, Institute De Physique Du Globe De Paris.
  • Carton, H., Sing, S.C., Party, 2007. Three dimensional Seismic imaging of active pull- apart basin: The Cınarcık Basin along the North Anatolian Fault, J. Geophys. Res., 112, doi:10.1029/2006JB004548.
  • Crampin, S. Üçer, B. 1975. The seismicity of Marmara Sea Region of Turkey, Geophys J R Astron Soc, 40, 269–288. Crampin, S., Evans, R., 1986. Neotectonics of the Marmara Sea region of Turkey. J.Geol. Soc. London, 143, 343-346.
  • Çakır Z., Barka A., Evren E., 2003. Coulomb stres interactions and the 1999 Marmara Earthquakes. Turkish Journal of Earth Science, 12, 91-103.
  • Çakır, O., Erduran, M., 2011. On the P and S receiver functions used for inverting the one-dimensional upper mantle shear-wave velocities, Surv. Geophys., 32, 71–98.
  • Demirbag, E., Rangin, C., Le Pichon X. & Şengör, A.M.C., 2003. Investigation of the tectonics of the Main Marmara Fault by means of deep-towed seismic data, Tectonophysics, 361, 1–19.
  • Erdik, M., Durukal, E., 2001. A hybrid procedure for the assesment of design basis earthquake ground motions for near-fault conditions. Soil Dynamics and Earthquake Engineering, 21:431-443.
  • Erdik, M., Durukal, E., Siyahi, B., Fahjan, Y., Şe- şetyan, K., Demircioğlu, M., Akman, H., 2003. Depreme Dayanıklı Yapı Tasarımında Deprem Yer Hareketinin Belirlenmesi. Beşinci Ulusal Deprem Mühendisliği Konferansı, İstanbul.
  • Erdik M, Demircioğlu M, Sesetyan K., Durukal E., Siyahi B., 2004. Earthquake hazard in Marmara region, Turkey. Soil Dynamics and Earthquake Engineering, 24:605–31.
  • Franceschina, G., Kravanja, S., Bressan, G., 2006. Source parameters and scaling relationships in the Friuli Venezia Giulia (Northeastern Italy) region. Physics of the Earth and Planetary Interiors, 154, 148-167
  • Gans, C.R., Beck, S., Zandt, G., Biryol, C.B., Ozacar, A.A., 2009. Detecting the limit of slab break-off in central Turkey: new high resolution Pn tomography results, Geophys. J. Int., 179, 1566–1572.
  • Gazioğlu, C., Gökaşan, E., Algan, O., Yücel, Z., Tok, B., Doğan, E., 2002. Morphologic features of the Marmara Sea from multibeam data. Mar. Geol. 190, 397– 420.
  • Gök, R., Hutchings, L., Mayeda, K., Kalafat, D., 2009. Source parameters for 1999 North Anatolian Fault Zone Aftershocks. Pure and Applied Geophisics, 166, 547-566.
  • Gökaşan, E., Ustaömer, T., Gazioğlu, C., Yücel, Z.Y., Öztürk, K., Tur, H., Ecevitoğlu, B., Tok, B., 2003. Morpho-tectonic evolution of the Marmara Sea inferred from multi-beam bathymetric and seismic data. Geo-Mar Lett, 23, 19-33.
  • Gürbüz C., Aktar M., Eyidoğan H., Cisternas A., Haessler H., Barka A., Ergin M., Türkelli N., Polat O., Üçer B., Kuleli S., Barıs ̧ S., Kaypak B., Bekler T., Zor E., Biçmen F., Yörük A., 2000. The seismotectonics of the Marmara Region (Turkey): Results from a microseismic experiment. Tectonophysics, 316, 1–17.
  • Gürbüz, C., Bekler, T., Toksoz, M.N., Kuleli, S., Kalafat, D. & Schultz, C.A., 2003. Seismic refraction studies and crustal structure in Anatolia. Commission on controlled-source seismology: deep seismic methods, in 12th International Workshop, Mountain Lake, 8–11 October, Virginia, USA.
  • Hadley, M. D., Helmberger, D. V., 1980. Simulation of strong ground motions. Bull. Seism. Soc. Am., 70, 610-617.
  • Hartzell, S. H., 1978. Earthquake Aftershocks as Green’s Functions. Geophys.Res.Lett, 5, 1-4.
  • Hutchings, L. and Wu, F., 1990. Empirical Green’s functions from small earthquakes: A waveform study of locally recorded aftershocks of the San Fernando earthquake. J. Geophys. Res., 95, 1187-1214.
  • Hutchings, L., 1991. “Prediction” of strong ground motion for the 1989 Loma Prieta earthquake using empirical Green’s functions. Bull, Seismol. Soc. Am, 81, 88–121.
  • Hutchings, L., 1992. Modeling earthquake ground motion with an earthquake simulation program (EMPSYN) that utilizes empirical Green’s Functions. University of California, Lawrence Livermore National Laboratory, UCRL-ID-105890, California.
  • Hutchings, L., 1994. Kinematic earthquake models and synthesized ground motion using empirical Green’s functions. Bull, Seismol. Soc. Am, 84, 1028–1050.
  • Hutchings, L., 2001. Program NetMoment, a Simultaneous Calculation of Moment, Source Corner Frequency, and Site Specific t* from Network Recordings, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-ID 135693, California (English).
  • Hutchings, L., Ioannidou, E., Kalogeras, I., Voulgaris, N., Savy, J., Foxall,W., Scog- namiglio, L., Stavrakakis, G., 2007. A physically-based strong ground-motion prediction methodology; application to PSHA and the 1999 M=6.0 Athens eart- hquake. Geophys. J. Int., 168, 569–680.
  • Irikura, K., 1983. Semi-Empirical Estimation of Strong Ground Motions During Large Earthquakes. Bull. Disaster Prevention. Res. Inst. Kyoto Univ. 33, 63–104.
  • İmren C., Le Pichon, X., Rangin C., Demirbağ E., Ecevitoğlu B., Görür N., 2001. The Anatolian fault within the Sea of Marmara: A new interpretation based on multi- channel seismic and multi-beam bathymetry data. Earth Planet. Sci. Letter, 186, 143-158.
  • Jackson, J. A., McKenzie D., 1988. The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East. Geophys J., 93, 45–73.
  • Jarpe, S.J., Kasameyer, P.K., 1996. Validation of a methodology for predicting broadband strong motion time histories using kinematic rupture models and empirical Green’s functions. Bull. Seismol. Soc. Am., 86, 1116–1129.
  • Kanamori, H., 1979. A semi-empirical approach to prediction of long period ground motions from great earthquakes. Bull. Seismol. Soc. Am., 69, 1645-1670.
  • Karabulut, H., Özalaybey S., Taymaz T., Aktar M., Selvi O., Kocaoğlu A., 2003. A Tomographic image of the shallow crustal structure in the Eastern Marmara. Geophys. Res. Lett., V:30, No:24, 2777.
  • Ketin, İ., 1969. Über die techtonisch-mechanischen Folgerungen aus den grossen anatolischen Erdbeden des Letzten Dezenniums, Geol. Rundsch. 36, 77-83.
  • Koulakov, I., Bindi, D., Parolai, S., Grosser, H., Milkereit, C., 2010. Distribution of seismic velocities and attenuation in the crust beneath the north Anatolian Fault (Turkey) from local earthquake tomography, Bull.seism. Soc. Am., 100(1), 207–224, doi:10.1785/0120090105.
  • Kostrov, B. V., 1964. Selfsimilar problems of propagating of shear cracks. J. Appl. Math. Mech. (PMM)., 28, 1077-1087.
  • Kuleli, S., Toksoz, M., Gurbuz, C., Gok, R. & Schultz, C., 2004. Crustal structure study in Turkey with controlled seismic sources, EOS, Trans. Am. geophys. Un., 85(47), Fall Meet. Suppl., Abstract S13B-1058.
  • Laigle, M., Becel, A., de Voogd, B., Hirn, A., Taymaz, T. & Ozalaybey, S., the Members of the SEISMARMARA Leg1, 2008. A first deep seismic survey in the Sea of Marmara: whole crust and deep basins. Earth planet. Sci. Lett., 270, 168–179.
  • Le Pichon, X, Şengör, A.M.C., Taymaz, T., 1999. Büyük Marmara Fayı: niçin, nerede ve ne olabilir? Cumhuriyet Bilim ve Teknik, 661, 8-11.
  • Le Pichon, X., Şengör, A.M.C., Demirbağ, E., 2001. The active main marmara fault, Earth planet. Sci. Lett., 192, 543–560.
  • Le Pichon, X., Chamot-Rooke, N., Rangin, C., Şengör, A.M.C., 2003. The North Anatolian fault in the sea of marmara, J. geophys. Res., 108, doi:1029/2002JB001862.
  • McKenzie, D.P., 1972. Active tectonics of the Mediterranean Region. Geophys. J. Astron. Soc., 30, 109-185.
  • Mert, A., Pınar, A., Fahjan, Y., Hutchings L., 2010. Prens adaları fayındaki depremlerin kaynak parametrelerinin eş zamanlı ve tekil ters çözüm teknikleri ile belirlenmesi. İstanbul Yerbilimleri Dergisi, C.23, S.1, SS. 53,63.
  • Mert A., 2011. İstanbul İçin Tasarım Esaslı Kuvvetli Yer Hareketi Dalga Formlarının Zaman Ortamında Türetilmesi. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, İstanbul (Türkçe).
  • Mert, A., Fahjan, Y., Pınar, A., Hutchings L., 2011. İstanbul için tasarım esaslı kuvvetli yer hareketi dalga formlarının zaman ortamında türetilmesi. 1. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, ODTÜ, Ankara.
  • Mert, A., Fahjan, Y., Pınar, A., Hutchings L., 2012. EGF simulation of high frequency ground motion. A case study for Mw=5.0 Central Marmara Fault earthquake. 15. WCEE, Lisbon.
  • Nelder, J. A. and R, Mead., 1965. A simplex method for function minimization, Computer Journal, 7, 308.
  • Okay, I.A., Demirbağ, E., Kurt, H., Okay, N., Kuşçu, İ., 1999. An active, deep marine strike-slip basin along the North Anatolian fault in Turkey. Tectonics, V:18, No:1, 129-147.
  • Okay, A.İ., Kaşlılar Ö. A., İmren, C., Boztepe G. A., Demirbağ, E., 2000. Geometry of active faults and strike-slip basins in the Marmara Sea, Northwest Turkey: A Multichanel Seismic reflection study. NATO Advanced Research Seminar, Istanbul, Abstracts 20-21.
  • Örgülü, G., 2011. Seismicity and source parameters for small-scale earthquakes along the splays of the North Anatolian Fault (NAF) in the Marmara Sea. Geophys J Int, 184, 385-404.
  • Papazachos, B.C., Papazachou, C.B., 1997. The earthquakes of Greece. Ziti Publication, Thessaloniki, 304 pp.
  • Parke, J.R., Minshull, T.A., Anderson, G., White, R.S., McKenzie,D., Kuşçu, İ., Bull, J.M., Görür, N., and Şengör, C., 1999. Active Faults in the Sea of Marmara, Western Turkey, imaged by seismic reflection profiles. Terra Nova, V:11, No:5, 223-227.
  • Parsons, T., 2004. Recalculated probability of M 7 earthquakes beneath the Sea of Marmara Turkey. J. Geophys. Res., V:109, B05304.
  • Pınar, A., Kuge, K., Honkura, Y., 2003. Moment inversion of recent small to moderate sized earthquakes: implications for seismic hazard and active tectonics beneath the Sea of Marmara, Geophys J. Int., 153, 133–145.
  • Pulido N, Ojeda A, Atakan K, Kubo T., 2004. Strong ground motion estimation in the Sea of Marmara region (Turkey) based on a scenario earthquake. Tectonophysics, 391, 357–374.
  • Salah, M.K., Şahin, S., Kaplan, M., 2007. Seismic velocity structure along the western segment of the North Anatolian Fault Zone imaged by seismic tomography, Bull. Earthq. Res. Inst. Univ. Tokyo, 82, 209–223
  • Saunders, P., Priestly, K., Taymaz, T., 1998. Variations in the crustal structure beneath western Turkey, Geophys. J. Int., 134, 373–389.
  • Scognamiglio L., Hutchings L., 2009. A test of physically based strong ground motion prediction methodology with the 26 September 1997, Mw=6.0 Colfiorito (Umbria-Marche sequence), Italy earthquake. Tectonophysics, 476, 145-158.
  • Smith, A.D., Taymaz, T., Oktay, F.Y., Yüce, H., Alpar, B., Başaran, H., Jackson, J.A., Kara, S., Şimşek, M., 1995. Highresolution seismic profiling in the Sea of Marmara (northwest Turkey): Late Quaternary sedimentation and sea-level changes. GSA Buletin, 107/8, 923-936.
  • Sørensen BM, Pulido N, Atakan K., 2007. Sensitivity of ground-motion simulations to earthquake source parameters: a case study for Istanbul, Turkey. Bull. Seism. Soc. Am., 97(3), 881–900.
  • Stein, R.S., Barka, A.A., Dieterich, J.H., 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophys. J. Int., 128, 3, 594-604.
  • Şengör, A. M. C., 1979. The North Anatolian Transform Fault: Its Age, Offset and Tectonic Significance. Journal of the Geological Society, 136, 263-282.
  • Şengör, A.M.C., 1980. Türkiye’nin Neotektoniğinin Esasları, TJK. Yayınları. Şengör, A.M.C., Canıtez, N., 1982. The North Anatolian Fault. Alpine Mediterranean Geodynamics, Geodynamics Series, 7, 205-216.
  • Şengör, A.M.C., Görür, N., Şaroğlu, F., 1985. Strike-slip Faulting and Related Basin Formation in Zones of Tectonic Escape: Turkey as a Case Study. Strike- Slip Deformation, Basin Formation and Sedimentation:The Society of Economic Paleontologists and Mineralogists Special Publication 17, 227-264.
  • Şengör, A.M.C., Tüysüz, O., İmren, C., Sakınç, M., Eyidoğan, H., Görür, N., 2005. The North Anatolian Fault: A New Look. Annual Review of Earth and Planetary Sciences, 33,37–112.
  • Taymaz, T., Yılmaz, Y. & Dilek, Y., 2007a. The Geodynamics of the Aegean and Anatolia: Introduction, Geol. Soc. London Spec. Pub., 291, 1–16, doi:10.1144/ SP291.1.
  • Taymaz, T., Wright, T., Yolsal, S., Tan, O., Fielding, E., Seyitoglu, G., 2007b. Source characteristics of June 6, 2000 Orta-C ̧ ankırı (Central Turkey) Earthquake: a synthesis of seismological, geological and geodetic (InSAR) observations, and internal deformation of Anatolia Plate, Geol. Soc. London Spec. Pub., 291, 259–290, doi:10.1144/SP291.12.
  • Tok, H.E., Beck, S.L, Zandt, G., Biryol, C.B., Warren, L.M.,Ozacar, A.A. Taymaz, T., 2008. NAF experiment: lithospheric structure of the central North Anatolia from S-wave receiver function analysis, EOS, Trans. Am. geophys. Un., 89(53), Fall Meet. Suppl., Abstract T21A-1917
  • Toksöz, M.N., Reilinger, R.E., Doll, C.G., Barka, A.A., Yalçın, N., 1999. Izmit (Turkey) earthquake of 17 August 1999, First Report. Seismological Res Lett, 70, 669–679.
  • Utkucu, M., Kanbur, Z., Alptekin, Ö., Sünbül, F., 2009. Seismic Behaviour of the North Anatolian Fault beneath the Sea of Marmara (NW Turkey): Implications for earthquake recurrence times and future seismic hazard. Natural Hazards, 50, 45-71.
  • William H., Brian P. Flannery, Saul A. Teukalsky, and William T. Vetterling 1998. Numerical Recipes in Fortran: The Art of Scientific Computing, Cambridge University Press, 3rd edition, p 499-502.
  • Wong, H. K., Ludmann, T., Uluğ, A. Görür, N., 1995. The Sea of Marmara: a plate boundary sea in an escape tectonic regime. Tectonophysics, 244, 231-250.
  • Wu, F. 1978. Prediction of Strong Ground Mo- tion Using Small Earthquakes, Proceedings of the 2nd International Conference on Microzonation. Vol II San Francisco, 701-704.
  • Yaltırak, C., Sakınç, M., and Oktay, F. Y., 2000a. “Westward propagation of the North Anatolian fault into the northern Aegean: Timing and kinematics: Comment, Geology. 28, 2,187-188
  • Yaltırak, C., Alpar, B., Sakinç, M. and Yüce. H., 2000b. Origin of the Strait of Çanakkale (Dardanelles): Regional tectonics and the Mediterranean–Marmara incursion. Marine Geology, 164, 139-159.
  • Yılmaz Y., Gökaşan E., Erbay AA., 2010. Morphotectonic development of the Marmara Region. Tectonophysics, 488, 51-70.
  • Yolsal-Çevikbilen, S., Berk Biryol, B.C., Beck, S., Zandt, G., Taymaz, T., Adıyaman, H.E., Ozacar, A., 2012. 3-D crustal structure along the North Anatolian Fault Zone in north-central Anatolia revealed by local earthquake tomography. Geophys. J. Int. (2012) 188, 819–849 doi: 10.1111/j.1365-246X.2011.05313.x