Kayalarda mikro çatlaklanma sürecine bağlı deformasyon evriminin sayısal analizi

Gerilmeye maruz kalan bir kayanın yenilme ve deformasyon karakteri mikro ölçekteki çatlaklanma sürecine bağlıdır. Bu sürecin nasıl evrildiğinin anlaşılması konusunda farklı laboratuvar ve analitik yöntemler kullanılmaktadır. Bu çalışmada söz konusu yöntemlere bir alternatif olarak mikro çatlaklanma sürecinin sayısal modelleme tekniği ile tespit edilebilirliği araştırılmıştır. İgnimbirit, mermer ve diyabaz olmak üzere üç farklı kaya türü üzerinde yapılan laboratuvar deneylerinden elde edilen makro mekanik parametreler, ayrık elemanlar yöntemine (DEM) dayalı sayısal kaya modellerinin kalibrasyonunda kullanılmıştır. Sonuçlar incelendiğinde model tahminleri ile laboratuvar verilerinin uyumlu olduğu belirlenmiş ve bu durum sayısal çatlaklanma analizlerinin kaya ortamını temsil edecek şekilde yürütülebileceğini göstermiştir. Laboratuvar deneylerinin simülasyonlarında, sıkışma gerilmesi altındaki model örneklerinde mikro çatlaklanmanın başladığı (σci) ve ilerleyerek biriktiği (σcd) kritik eşik gerilme seviyeleri tespit edilmiştir. Bu gerilme seviyeleri sırasıyla ignimbirit için σci = 25 MPa ve σcd = 37 MPa; mermer için σci = 21 MPa ve σcd = 30 MPa ve diyabaz için σci = 38 MPa ve σcd = 55 MPa olarak belirlenmiştir. Tüm kaya modellerinde mikro çatlaklanma çekme mekanizması tarafından kontrol edilirken her üç kaya türü de kırılgan bir davranış sergilemektedir. Elde edilen tüm veriler, kayalardaki mikro çatlaklanma sürecinin araştırılmasında DEM tabanlı sayısal modelleme tekniğinin diğer yöntemlere alternatif olarak güvenli bir şekilde kullanılabileceğini göstermektedir.

___

  • ASTM, 2000. Annual Book of ASTM Standards-Soil and Rock, Building Stones, Section-4, Construction vol. 04.08. ASTM Publications, Philadelphia.
  • Baud, P., Klein, E., and Wong, T., 2004. Compaction localization in porous sandstones: spatial evolution of damage and acoustic emission activity. Journal Structural Geology, 26:603–624.
  • Besuelle, P., Desrues, J., and Raynau, S., 2000. Experimental Characterisation of the Localisation Phenomenon Inside a Vosges Sandstone in a Triaxial Cell. International Journal of Rock Mechanics and Mining Sciences, 37 (8): 1223-1237.
  • Bieniawski, Z.T., 1967. Mechanism of brittle fracture of rock. Part I: Theory of fracture process. International Journal of Rock Mechanics and Mining Sciences, 4: 395-430.
  • Brace, W.F., 1964. Brittle fracture of rocks. State of Stress in the Earth's Crust, edited by W.R. Judd. American Elsevier Publishing Company, New York, 111–180.
  • Briševac, Z., Kujundžić, T., Čajić, S., 2015. Current cognition of rock tensile strength testing by Brazilian test. Mining-Geology- Petroleum Engineering Bulletin, https://doi.org/10.17794/rgn.2015.2.2.
  • Cheng, H., Yang, X., Zhang, Z., Li, W., and Ning, Z., 2021. Damage evaluation and precursor of sandstone under the uniaxial compression: Insights from the strain-field heterogeneity. Plos One, 16(12): e0262054.https://doi.org/10.1371/journal.p one.0262054 PMID: 34965268
  • Desrues, J., and Andò, E., 2015. Strain localisation in granular media. Comptes Rendus. Physique, Académie des sciences, Paris, 16 (1): 26-36.
  • Diederichs, M.S., 2007. The 2003 CGS Geocolloquium Address: Damage and spalling prediction criteria for deep tunnelling. Canadian Geotechnical Journal, 44, 9: 1082-1116.
  • Dinç Göğüş Ö., 2021. Mikro Parametrelerin Makro Mekanik Kaya Davranışı Üzerindeki Etkisi: Ayrık Elemanlar Yöntemiyle Model Kalibrasyonu. Jeoloji Mühendisliği Dergisi, 45: 67-82.
  • Dinç Göğüş Ö., and Avşar, E., 2022. Stress levels of precursory strain localization subsequent to the crack damage threshold in brittle rock. Plos One, 17(11): e0276214. https://doi.org/10.1371/journal.pone.02762 14.
  • Dinç, Ö., and Scholtès, L., 2018. Discrete Analysis of Damage and Shear Banding in Argillaceous Rocks. Rock Mechanics and Rock Engineering, 51:1521–1538.
  • Dyskin, A., and Germanovich, L.N., 1993. A model of crack growth in microcracked rock. International Journal of Rock Mechanic Sciences and Geomechanics Abstracts, 30(7): 813-820.
  • Eberhardt, E., Stead, D., Stimpson, B., and Read, R.S., 1998. Identifying crack initiation and propagation thresholds in brittle rock. Canadian Geotechnical Journal, 35: 222–233.
  • Germanovich, R.N., Salganik, R.L., Dyskin, A.V., and Lee, K.K., 1994. Mechanisms of brittle fracture of rock with pre-existing cracks in compression. Pure Applied Geophysics, 143:117–149.
  • Gorski, B., Conlon, B., Ljunggren, B., 2007. Determination of the direct and indirect tensile strength on cores from borehole KFM01D. Forsmark site investigation, http://www.skb.se/upload/publications/pdf/ P-07-76.pdf, Swedish Nuclear Fuel and Waste Management Co, SKB Rapport P- 07-76, 28.
  • Griffith, A.A., 1921. The Phenomena of Rupture and Flow in Solids. Philosophical Transactions of the Royal Society A, 221:163-198.
  • Guo, S., Qi, S., Zou, Y., and Zheng, B., 2017. Numerical Studies on the Failure Process of Heterogeneous Brittle Rocks or Rock- Like Materials under Uniaxial Compression. Materials (Basel), 1; 10(4):378. https://doi.org/10.3390/ma10040378 PMID: 28772738.
  • Hoek, E., Carranza-Torres, C.T., Corkum, B. 2002. Hoek–Brown failure criterion 2002 edition, Proceedings of the Fifth North American Rock Mechanics Symposium (NARMS-TAC), Toronto: 267–273.
  • Holcomb, D., Rudnicki, J.W., Issen, K.A., and Sternlof, K., 2007. Compaction localization in the Earth and the laboratory: state of the research and research directions. Acta Geotechnica, 2(1):1–15. doi:10.1007/s11440-007-0027-y.
  • ISRM, 2007. The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In: Ulusay, R., Hudson, J.A. (Eds.), Suggested Methods Prepared by the Commission on Testing Methods, International Society for Rock Mechanics, Compilation Arranged by the ISRM Turkish National Group. Kozan Publishing, Ankara, Turkey.
  • Jensen, S.S., 2016. Experimental study of direct tensile strength in sedimentary rocks. Master thesis, Norwegian University of Science and Technology, 95.
  • Ji, Y., Stephen, A.H., Baud, P., and Wong, T.F., 2015. Characterization of pore structure and strain localization in Majella limestone by X-ray computed tomography and digital image correlation. Geophysical Journal International, Oxford University Press (OUP), 700-719.
  • Lei, X., 2006. Typical phases of pre-failure damage in granitic rocks under differential compression. Fractal Analysis for Natural Hazards, Geological Society, London, Special Publications, 261, 11–29.
  • Lei, X.L., Kusunose, K., Nishizawa, O., Cho, A., and Satoh, T., 2000. On the spatio- temporal distribution of acoustic emissions in two granitic rocks under triaxial compression: the role of pre-existing cracks. Geophysical Research Letters, 27, 13:1997-2000.
  • Lockner, D.A., Byerlee, J.D., Kuksenko, V., Ponomarev, A., and Sidorin, A., 1991. Quasi-static fault growth and shear fracture energy in granite. Nature, 350:39–42.
  • Louis, L., Wong, T.F., and Baud, P., 2007. Imaging strain localization by X-ray radiography and digital image correlation: Deformation bands in Rothbach sandstone. Journal of Structural Geology, 29:129-140.
  • Martin, C.D., and Chandler, N.A., 1994. The progressive fracture of Lac du Bonnet granite. International Journal of Rock Mechanics and Mining Sciences, 31(6): 643-659.
  • Moradian, Z., Einstein, H.H., and Ballivy, G., 2015. Detection of Cracking Levels in Brittle Rocks by Parametric Analysis of the Acoustic Emission Signals. Rock Mechanics and Rock Engineering, 49: 785–800.
  • Nicksiar, M., and Martin, C.D., 2012. Evaluation of Methods for Determining Crack Initiation in Compression Tests on Low-Porosity Rocks. Rock Mechanics and Rock Engineering, 45:607–617.
  • Nicksiar, M., and Martin, C.D., 2012. Evaluation of Methods for Determining Crack Initiation in Compression Tests on Low-Porosity Rocks. Rock Mechanics and Rock Engineering, 45:607–617.
  • Peng, S., and Johnson, A.M., 1972. Crack growth and faulting in cylindrical specimens of Chelmsford granite. International Journal of Rock Mechanics and Mining Sciences, 9:37-86.
  • Perras, M.A., Diederichs, M.S., 2014. A review of the tensile strength of rock: concepts and testing. Geotechnical and Geological Engineering, 32:525–546.
  • Potyondy, D.O., and Cundall, P.A., 2004. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41(8):1329–1364.
  • Renard, F., Cordonnier, B., Kobchenko, M., Kandula, N., Weiss, J., and Zhu, W., 2017. Microscale characterization of rupture nucleation unravels precursors to faulting in rocks. Earth Planet Science Letters, 476: 69–78.
  • Scholtés, L., and Donzé, F.V., 2013. A DEM model for soft and hard rocks: role of grain interlocking on strength. Journal of Mechanics and Physics of Solids, 61:352– 369.
  • Shimizu, H., Koyama, T., Ishida, T., Chijimatsu, M., Fujita, T., and Nakama, S., 2010. Distinct element analysis for Class II behavior of rocks under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 47: 323–333.
  • Shirole, D., Walton, G., and Hedayat, A., 2020. Experimental investigation of multi-scale strain-field heterogeneity in rocks. International Journal of Rock Mechanics and Mining Sciences, 127:104212.
  • Schubnel, A., Thompson, B.D., Fortin, J., Guéguen, Y., Young, R.P., 2007. Fluid- induced rupture experiment on Fontainebleau sandstone: premonitory activity, rupture propagation, and aftershocks. Geophys. Res. Lett.34, L19307.
  • Šmilauer, V., and et al., 2015. Yade Documentation 2nd edition. doi:10.5281/zenodo.34073. http://yade- dem.org.
  • Wang, B., Chen, Y., and Wong, T.F., 2008. A discrete element model for the development of compaction localization in granular rock. Journal of Geophysical Research, 113: B03202.
  • Wu, H., Guo, N., and Zhao, J., 2018. Multiscale modeling and analysis of compaction bands in high porosity sandstones. Acta Geotechnica, 13:575–599. https://doi.org/10.1007/s11440-017-0560- 2.
  • Xue, L., Qin, S., Sun, Q., Wang, Y., Lee, L.M., and Li, W., 2014. A Study on Crack Damage Stress Thresholds of Different Rock Types Based on Uniaxial Compression Tests. Rock Mechanics and Rock Engineering, 47:1183–1195.
  • Yang, W., Li, G., Ranjith, P.G., and Fang, L., 2019. An experimental study of mechanical behavior of brittle rock-like specimens with multi-non-persistent joints under uniaxial compression and damage analysis. International Journal of Damage Mechanics, 28(10): 1490–1522.
  • Zang, A., Christian, W.F., Stanchits, S., Janssen, C., and Dresen, G., 2000. Fracture process zone in granite. Journal of Geophysical Research, 105(23): 651-661.
  • Zhang, H., Huang, G., Song, H., and Kang, Y., 2013. Experimental characterization of strain localization in rock. Geophysical Journal International, 194: 1554–1558.
Yerbilimleri-Cover
  • ISSN: 1301-2894
  • Başlangıç: 1976
  • Yayıncı: Hacettepe Üniversitesi Yerbilimleri Uygulama ve Araştırma Merkezi