Kaya Kütlesi Deformasyon Modülünün Farklı Yöntemlerle Belirlenmesi

Birçok tasarım parametresi arasında kaya kütlelerinin yerinde deformasyon modülü (Em) kaya mühendisliği proje- lerinin başarıyla yürütülmesinde ve tasarımında hayati öneme sahip olan önemli bir parametredir. Ancak, yerinde testler zaman alıcı ve pahalı hatta bazı durumlarda yapılması imkânsız olabilmektedir. Bu sınırlandırmalar, araştır- macıları deformasyon modülünü daha düşük fiyatla kolay bir şekilde diğer kaya kütle özelliklerine (RQD, RMR, Q) dayanarak dolaylı olarak tahmininde ampirik eşitlik geliştirmesine zorlamıştır. Bu çalışmada da kaya kütleleri için ampirik bir eşitlik önerilmiştir. Bu amaca yönelik olarak, bir tünel güzergâhının otuz yedi farklı noktasındaki volka- nik, tortul ve metamorfik kaya kütleleri üzerinde çalışılmıştır. Karşılaştırmak amacıyla, literatürde önerilmiş olan altı farklı ampirik eşitlik yardımıyla Em değerleri hesaplanmıştır. Çoklu karşılaştırma ANOVA testleri ayrıca önerilen ve diğer eşitlikler arasında yapılmıştır. ANOVA analizleri bu çalışmada üretilen eşitliğin kaya kütlelerinin Em değerlerinin belirlenmesinde güvenle kullanılabileceğini göstermiştir.

Determination of Rock Mass Deformation Modulus by Different Methods

Among the many design properties, the deformation modulus (Em) of in-situ rock mass is a crucial parameter and has a vital importance for the design and successful execution of rock engineering projects. However, in-situ tests are time–consuming, expensive and, in some cases, even impossible to carry out. This constraint forced the investigators to develop an empirical equation for indirect estimation of the deformation modulus of rock masses based on other rock mass properties that can be easily determined at low cost such as RQD, RMR, Q, etc. In this study an empirical equation was proposed for tested rock masses. For these purposes, volcanic, sedimentary and metamorphic rock masses were studied at different thirty seven points along a tunnel alignment. For comparison, Em was calculated from six other empirical equations recommended in the literature. Multiple comparison tests (ANOVA) were also performed among the new relation and other empirical equations. Based on the ANOVA analy- ses, the Em of a rock mass can be estimated from the proposed equation reliably.

___

  • Abad, J., Caleda, B., Chacon, E., Gutierrez, V., and Hidlgo, E., 1983. Application of ge- omechanical classification to predict the convergence of coal mine galleries and to design their supports. 5th Inter- national Society for Rock Mechanics Congress, Melbourne, 15-19.
  • Aksoy, C.A., Geniş, M., Aldaş, G.U., Özacar, V., Özer, S.C., and Yılmaz, Ö., 2012. A comparative study of the determination of rock mass deformation modulus by using different empirical approaches. Engineering Geology, 131-132, 19-28.
  • Aydan, Ö., Ulusay, R., and Kawamoto, T., 1997. Assessment of rock mass strength for underground excavations. Proceedings of the 36th US rock mechanics sympo- sium, New York, June/July, 777-786.
  • Barton, N.R., Lien, R. and Lunde, J., 1974. Engi- neering Classification of Rock Masses for the Design of Tunnel Support. Rock Mechanics 6, 189-239.
  • Barton, N., 1995. The influence of joint proper- ties in modelling jointed rock masses. Keynote Lecture, 8th Congress ISRM, Tokyo. Barton, N.R., 2002. Some New Q-value Corre- lations to Assist in Site Characterization and Tunnel Design. International Jour- nal of Rock Mechanics Mining Scien- ces 39 (2), 185-216.
  • Basarir, H., Ozsan, A. and Karakus, M., 2005. Analysis of support requirements for a shallow diversion tunnel at Guledar dam site, Turkey. Engineering Geology 81(2), 131-145.
  • Bieniawski, Z.T., 1973. Engineering classifica- tion of jointed rock masses. Transac- tions of the South African Institute of Civil Engineers, 15 (12), 335-344.
  • Bieniawski, Z.T., 1976. Rock mass classification in rock engineering applications. Proce- edings of the Symposium on Explorati- on for Rock Engineering, South Africa, Balkema, Rotterdam, 97-106.
  • Bieniawski, Z.T., 1978, Determining rock mass deformability, experience from case histories. International Journal of Rock Mechanics and Mining Sciences & Ge- omechanics Abstracts, 15 (5), 237-247.
  • Bieniawski, Z.T., 1989. Engineering rock mass classifications, Wiley, New York, 251. Chun, B., Lee, Y., Seo, D., and Lim, B., 2006. Correlation of deformation modulus by PMT with RMR and rock mass conditi- on. Tunnelling and Underground Space Technol., 21 (3-4): 231-232.
  • Clerici, A., 1993. Indirect determination of rock masses-case histories. L.M. Riberio e Sousa and N.F. Grossman, eds. Proce- edings of the Symposium EUROCK’93. Rotterdam: AA Balkema, 509-517.
  • Deere, D. U., 1964. Technical description of rock cores for engineering purposed, Rock Mechanics and Rock Engineering, 1, 17-22.
  • Geniş, M., Basarir, H., Ozarslan, A., Bilir, E. and Balaban, E., 2007. Engineering geolo- gical appraisal of the rockmasses and preliminary support design, Dorukhan Tunnel, Zonguldak, Turkey. Engineering Geology, 92, 14-26.
  • Gürocak, Z., 2011. Analyses of stability and support design for a diversion tunnel at the Kapikaya dam site, Turkey. Bulletin of Engineering Geology and the Envi- ronment, 70 (1), 41-52.
  • Gökçeoğlu, C., Sönmez, H. and Kayabaşı, A., 2003. Predicting the deformation moduli of rock masses. International KaramJournal of Rock Mechanics Mining Sci- ences, 40, 701-710.
  • Hashemi, M., Moghaddas, S., and Ajalloeian, R., 2010. Application of rock mass charac- terization for determining the mechani- cal properties of rock mass: a compa- rative study. Rock Mechanics and Rock Engineering, 43, 305-320
  • Hochberg, Y., and Tamhane, A.C., 1987. Multip- le comparison procedures. New York: John Wiley & Sons press. Hoek, E., and Brown, E.T., 1997. Practical esti- mates of rock mass strength. Internati- onal Journal of Rock Mechanics Mining Sciences, 34 (8), 1165-1186.
  • Hoek, E., and Diederichs, M.S., 2006. Empirical estimation of rock mass modulus. In- ternational Journal of Rock Mechanics Mining Sciences, 43, 203-215.
  • ISRM., 1981. ISRM Suggested Methods: Rock Characterization, Testing and Monito- ring, E. T. Brown (ed.), Pergamon Press, London. ISRM., 2007. The complete ISRM suggested methods for rock characterization, tes- ting and monitoring: 1974-2006. In: Ulusay, Hudson (Eds.), Suggested met- hods prepared by the commission on testing methods, International Society for Rock Mechanics. ISRM Turkish Na- tional Group, Ankara, Turkey.
  • Işık, N., S., Ulusay, R., and Doyuran, V., 2008. Deformation Modulus of Heavily Join- ted-Sheared and Blocky Greywackes by Pressuremeter Tests: Numerical, Ex- perimental and Empirical Assessments, Engineering Geology, 101, 269-282.
  • Kahraman, S., 2001. Evaluation of simple met- hods for assessing the uniaxial comp- ressive strength of rock. International Journal of Rock Mechanics Mining Sci- ences, 38, 981-994.
  • Kaiser, T.K., and Gale, A.D., 1985. Evaluation of Cost and Emprical Support Design at B.C. Rail Tumbler Ridge Tunnels. Cana- dian Tunnelling, Tunnelling Association of Canada, Wiley, New York, 77-106.
  • Karaman, K., and Kesimal, A., 2013. Evaluation of the influence of porosity on the En- gineering properties of volcanic rocks from the Eastern Black Sea Region: NE Turkey. Arabian Journal of Geoscien- ces, 1-8 .
  • Karaman, K., Kesimal, A., Kaya, A., and Demi- rel, S., 2013. Dolaylı yöntemlerle belir- lenen kaya malzemesine ait tek eksenli basınç dayanımı parametresinin RMR89 puanı hesaplamalarında kullanılabilirliği, 3. Uluslararası Ulaşımda Yeraltı Kazıları Sempozyumu, 29-30 Kasım, İstanbul.
  • Karaman, K., Kesimal, A., and Ersoy, H., 2014. A comparative assessment of indirect methods for estimating the uniaxial compressive and tensile strength of rocks. Arabian Journal of Geosciences, 1-11.
  • Karslı, M., 2009. Arhavi-Hopa (Artvin) arasındaki karayolu şevlerinin duraylılık açısından incelenmesi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Trabzon.
  • Kaya, A., Bulut, F., Alemdağ, S., and Sayın, A., 2011. Analysis of support requirements for a tunnel portal in weak rock: A case study from Turkey. Scientific Research and Essays, 6 (31), 6566-6583.
  • Kaya, A., 2012. Cankurtaran (Hopa-Artvin) tünel güzergahının ve çevresinin jeoteknik açıdan incelenmesi. Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 185 pp. Kayabaşı, A., Gokceoglu, C., and Ercanoglu, M., 2003. Estimating the deformation modulus of rock masses: a comparati- ve study. International Journal of Rock Mechanics Mining Sciences, 40, 55-63.
  • Ketin, İ., 1966. Tectonic units of Anatolia. Bull. Mineral Researh and Exploration Institu of Turkey, 66, 22-34.
  • Khabbazi, A., Ghafoori, M., Lashkaripour, G.R., and Cheshomi, A., 2013. Estimation of the rock mass deformation modulus using a rock classification system. Ge- omechanics and Geoengineering: An international Journal, 46-52, 8/1.
  • Kumar, N., Samadhiya, N.K., Anbalagan, R., 2004. Application of rock mass classi- fication system for tunneling in Himala- ya, India Paper 3B 14, SINOROCK2004 Symposium. International Journal of Rock Mechanics Mining Sciences, 41 (3), 531.
  • Nejati, H.R., Ghazvinian, A., Moosavi, S.A., and Sarfarazi, V., 2014. On the use of the RMR system for estimation of rock mass deformation modulus. Bulletin of Engineering Geology and the Environ- ment, 73 (2), 531-540.
  • Laderian, A., and Abaspoor , M.A., 2012. The correlation between RMR and Q systems in parts of Iran. Tunnelling Un- derground Space Technology, 27, 149- 158. Ocak, İ., 2008. Estimating the modulus of elasti- city of the rock material from compres- sive strength and unit weight. Journal of the South African Institute Mining and Metallurgy, 108 (10), 621-626.
  • Özdamar, K., 2011. Paket programlar ile istatis- tiksel veri analizi. Kaan Kitabevi, Eskişe- hir, 8. Baskı. Palmström, A., and Singh, R., 2001. The defor- mation modulus of rock masses-com- parisons between in situ tests and indi- rect estimates. Tunnelling Underground Space Technology, 16, 115-131.
  • Priest, S., D. and Hudson, J.A., 1976. Discon- tinuity spacing in rock, International Journal of Rock Mechanics and Mining Sciences and Geomechanics, Abs- tracts, 13, 135-148.
  • Ramamurthy, T., 2004. A geo-engineering clas- sification for rocks and rock masses. In- ternational Journal of Rock Mechanics Mining Sciences, 41, 89-101.
  • Read, S.A.L., Richards, L.R., and Perrin, N.D., 1999. Applicability of the Hoek-Brown failure criterion to New Zealand grey- wacke rocks, Proc. 9th International Congress on Rock Mechanics, Paris, 2, 655-660. Sarı, D., and Pasamehmetoglu, A.G., 2004. Pro- posed support design, Kaletepe tunnel, Turkey, Engineering Geology, 72, 201- 216.
  • Serafim, J.L., and Pereira, J.P., 1983. Conside- ration of the geomechanics classifica- tion of Bieniawski, Proceedings of the International Symposium on Enginering Geology Underground Construction, Lisbon, Portugal, 1133-1144.
  • Shen, J., Karakus, M., and Chaoshui, X., 2012. A comparative study for empirical equ- ations in estimating deformation modu- lus of rock masses. Tunnelling Underg- round Space Technology, 32, 245-250.
  • Singh, T.N., Kainthola, A., and Venkatesh, A., 2012. Correlation between point load index and uniaxial compressive strength for different rock types. Rock Mechanics and Rock Engineering 45 (2), 259-264.
  • Sönmez, H., Gökçeoğlu, C., Nefeslioğlu, H.A., and Kayabaşı, A., 2006. Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation. International Journal of Rock Mecha- nics and Mining Sciences, 43, 224-235.
  • Terzaghi, K., 1946. Rock Defects and Loads on Tunnel Support. In: Proctor, R. V., Whi- te T (eds), Rock Tunnelling with Steel Support, 1. Commercial Shearing Co., Youngstown, OH, 15-99.
  • Tuğrul, A., 1998. The application of rock mass classification systems to underground excavation in weak limestone, Atatürk dam, Turkey. Engineering Geology, 50 (3-4), 337-345.
  • Ulusay, R., and Sönmez, H., 2007. Kaya Kütle- lerinin Mühendislik Özellikleri, 2. Baskı, Jeoloji Mühendisleri Odası, Ankara. Zhang, L., and Einstein, H.H., 2004. Using RQD to estimate the deformation modulus of rock masses. International Journal of Rock Mechanics and Mining Sciences, 41 (2), 337-41.
  • Zhang, L., 2004. Drilled Shafts in Rock Analysis and Design. A. A. Balkema Publishers, Taylor & Francis Group Plc., London, UK.