K-Ar ve ''Ar yaş tayini yöntemlerinin karşılaştırılması: Güney Türkiye ofiyolit tabanı metamorfiklerinden örnekler

Bu çalışmada, Toros Kuşağı ofiyolitlerinin, metamorfik taban kayaçlarına ait amfibolitlerinden ve mikaşistlerinden ayıklanan amfibol ve mika mineralleri için K-Ar ve 40Ar-39Ar yaş tayini yöntemleri uygulanmıştır. K-Ar yaş tayini yöntemi ile amfiboller 82.3 ± 5 My ile 124.2 ± 3 My arasında değişen geniş bir yaş aralığı vermiştir. Aynı yöntemle mika minerallerinden 83.9 ± 2 My ile 93.7 ± 2 My arasında değişen yaşlar elde edilmiştir. Buna karşın, aynı kayaçlardan seçilen amfibollerden 40Ar-39Ar yöntemi kullanılarak, 90.7 ± 0.5 My ile 93.8 ± 1.7 My arasında yaşlar elde edilmiştir. Aynı yöntemle mikalar 91.2 ± 2.3 My ile 93.6 ± 0.8 My arasında yaş sonuçları vermişlerdir. Adı geçen iki yöntemi karşılaştırabilmek, ya da K-Ar yaş tayini yönteminin güvenilirliğini anlayabilmek için aynı kayaçlardan amfibol ya da mika mineralleri analiz edilmiş ve sonuçların genellikle uyumsuz oldukları saptanmıştır. Örneğin, Beyşehir ofiyolitik melanjı içinde yeralan bir amfibolitten elde edilen amfibol minerallerinden K-Ar yöntemi ile 107.8 ± 4 My yaş sonucuna ulaşılmışken, aynı kayaçtaki amfibollerden 40Ar-39Ar yöntemi ile 90.9 ± 1.3 My elde edilmiştir. Her iki yöntemden elde edilen yaş verilerinin birbirleriyle uyuşmamasının başlıca nedenleri; analiz edilen minerallerin heterojenliği ve düşük potasyum içerikleri, ısıl (örn., hidrotermal alterasyon) süreçler ya da dış etkenler (örn., yeraltısuyu) ile sistemden 40Ar kaybı yada ilavesi ve bu etkilerin K-Ar yöntemi ile belirlenememesi olarak sayılabilir. Ayrıca K-Ar yönteminde 40Ar ve 40K içeriklerinin farklı yöntemlerle saptanması, analitik hata olasılığını yükseltmektedir.

Comparison of the K-Ar and ''Ar-''Ar dating methods: examples from the metamorphic sole rocks of the southern Turkish ophiolites

In this study, K-Ar and 40Ar-39Ar dating methods were used for amphibole and mica separated from the amphibolites and micaschists of the metamorphic sole rocks from the Tauride Belt ophiolites. Amphiboles and micas from the metamorphic sole rocks of the Tauride Belt ophiolites yielded K-Ar ages between 82.3 ± 5 Ma and 124.2 ± 3 Ma, and between 83.9 ± 2 Ma to 93.7 ± 2 Ma, respectively. However, 40Ar-39Ar ages from the same rocks are between 90.7 ± 0.5 Ma and 93.8 ± 1.7 Ma for amphiboles, and between 91.2 ± 2.3 Ma to 93.6 ± 0.8 Ma for whitemicas. Both methods were performed on the amphibole and white mica grains from the same sample to compare or to understand the reliability of K-Ar method. The results generally do not show an agreement. For instance, amphibole samples from the amphibolite of the Beyşehir ophiolite yielded 107.8 ± 4 Ma from K-Ar method of dating. The amphiboles from the same amphibolite sample yielded 90.9 ± 1.3 Ma by using 40Ar-39Ar method of dating. The main reasons of the age differences obtained from the both methods can be the heterogenity and the low potassium content of the minerals analysed, thermal processes (e.g. hydrothermal alteration) or the external factors (e.g. groundwater) induced the lost or addition of 40Ar in the system which could not be detected by K-Ar method. In addition, in the K-Ar method, determination of 40Ar and 40K contents with different methods results in an increase in the possibility of the analytical error.

___

Aldrich, L.T., and Nier, A.O., 1948. Argon 40 in potassium minerals. Physical Review Letters, 74, 876-877.

Çelik, Ö.F., 2002. Geochemical, petrological and geochronological observations on the metamorphic rocks of the Tauride Belt ophiolites (S.Turkey). PhD Thesis, Geneva University, Terre and Environment 39.

Çelik, Ö.F., 2007. Metamorphic sole rocks and their mafic dykes in the eastern Tauride belt ophiolites (southern Turkey): implications for OIB type magma generation following slab break–off. Geological Magazine, 144, 849-866.

Çelik, Ö.F., and Delaloye, M., 2003. Origin of metamorphic sole rocks and their postkinematic mafic dyke swarms in the Antalya and Lycian ophiolites, SW Turkey. Geological Journal, 38, 235-256.

Çelik, Ö.F., and Delaloye, M., 2006. Characteristics of ophiolite-related metamorphic rocks in the Beyşehir ophiolitic mélange (Central Taurides, Turkey), deduced from whole rock and mineral chemistry. Journal of Asian Earth Sciences, 26, 461-476.

Çelik, Ö.F., Delaloye, M., and Feraud, G., 2006. Precise 40Ar-39Ar ages from the metamorphic sole rocks of the Tauride Belt ophiolites, southern Turkey: implications for the rapid cooling history. Geological Magazine, 143 (2), 213-227.

Dalrymple, G.B., and Lanphere, M.A., 1969. Potassium- argon dating. Freeman, W.H., San Francisco.

Dickin, A.P., 1995. Radiogenic Isotope Geology. Cambridge University Press., New York.

Dilek, Y., Thy, P., Hacker, B., and Grundvig, S., 1999. Structure and petrology of Tauride ophiolites and mafic dyke intrusions (Turkey): Implications for the Neotethyan ocean. Geological Society of America Bulletin, 111, 1192-1216.

Faure, G., 1977. Principles of Isotope Geology. Smith-Wyllie Intermediate Geology Series. John Wiley & Sons, New York.

Fuhrmann, U., Lippolt, H. and Hess, J.C., 1987. HD-B1 biotite reference material for K–Ar chronometry. Chemical Geology, 66, 41-51.

Goodman, C., and Evans, R.D., 1941. Age measurements by radioactivity. Geological Society America Bulletin, 52, 491-544.

Harris, N.B., Kelley, S., and Okay, A.I., 1994. Post-collision magmatism and tectonics in northwest Anatolia. Contribution to Mineralogy and Petrology, 117, 241– 252.

Heier, K.S., and Adams, J.A.S., 1964. The geochemistry of the alkali metals. Physics and Chemistry of the Earth, 5, 253-381.

McDougall, I., and Harrison, T.M., 1988. Geochronology and Thermochronology by the 40Ar-39Ar method. Oxford Monographs on Geology and Geophysics, New York.

Odin, G.S., and 35 Collaborators, 1982. Interlaboratory standards for dating purposes. In: Odin, G.S. (ed.), Numerical Dating in Stratigraphy, Chichester, John Wiley, pp. 123-149.

Önen, A.P., 2003. Neotethyan ophiolitic rocks of the Anatolides of NW Turkey and comparison with Tauride ophiolites. Journal of the Geological Society, London, 160, 947-962.

Parlak, O., and Delaloye, M., 1999. Precise 40Ar- 39Ar ages from the metamorphic sole of the Mersin ophiolite (Southern Turkey). Tectonophysics, 301, 145-158.

Parlak, O., Delaloye, M., and Bingöl, E., 1995. Origin of sub-ophiolitic metamorphic rocks beneath the Mersin ophiolite, southern Turkey. Ofioliti, 20, 97-110.

Steiger, R.H., and Jäeger, E., 1977. Subcommission on geochronology: convention on the use of decay constants in geo-and cosmo-chronology. Earth and Planetary Science Letters, 55, 359-362.

Thuizat, R., Whitechurch, H., Montigny, R., and Juteau, T. 1981. K-Ar dating of some infra- ophiolitic metamorphic soles from the eastern Mediterranean: New evidence for oceanic thrusting before obduction. Earth and Planetary Science Letters, 52, 302-310.

Yılmaz, P.O., and Maxwell, J.C., 1982. K-Ar investigations from the Antalya Complex ophiolites, SW Turkey. Ofioliti, 7, 527- 538.

Yılmaz, P.O., and Maxwell, J.C., 1984. An example of an obduction mélange: The Alakır Çay unit, Antalya Complex, southwest Turkey. Geological Society of America Special Publications, 198, 139-152