Importance of clast size and shape on selective bedload transport in a coarse-gravel bed river: Trout Beck, England

Bu makale Trout Beck akarsuyunda taşınan çakıl ağırlıklı yatak malzemesinin boyut ve şekil özelliklerinin taşınma üzerindeki etkilerini araştırmak amacıyla gerçekleştirilen arazi çalışmalarına dayanmaktadır. Taşınan yatak malzemesi iki farklı zamanda örneklenmiş olup, yatak yükü malzemesi örneklemesi ise Wolman yöntemi uygulanarak beş ayrı yerde yapılmıştır. Doğal bir akarsu yatağında çakılın boyut ve şekil özeliklerine bağlı olarak oluşan seçici taşınma ve çakılların yatak boyunca dağılımının niceliksel olarak belirlenmesi amacıyla mıknatıslı çakıl deneyleri yapılmıştır. Örneklenen yatak malzemesi ve tutulmuş yatak yükü malzemesinin karşılaştırılması sonucunda anılan yerde çakıl boyutuna bağlı olarak belirgin bir seçici taşınma, buna karşılık çakıl şekli itibariyle kısmi bir seçici taşınma söz konusu olduğu anlaşılmıştır. Tutulmuş malzeme içerisindeki küçük boyuttaki çakılların oranı, yatak malzemesindekine göre daha fazladır. Yatak malzemesiyle karşılaştırıldığında, tutulmuş yatak yükü içerisindeki küresel ve prizma benzeri çakılların oranı daha fazla, buna karşılık çubuk (ovalimsi) ve bıçak benzeri yassı çakılların daha az oranda olduğu belirlenmiştir.Mıknatıslı çakıllarla yapılan deney sonuçları ise, hem çakıl boyutuna hem de çakıl şekline bağlı olarak seçici taşınma örneklerini ortaya koymuştur. Küçük boyut kategorisindeki çakıllar (32-64 mm), akarsu yatağı talveğini takiben en uzak mesafeye taşınmışlardır. Şekil özellikleri itibariyle, hemen bütün ölçüm dönemlerinde, küre şekilli çakıllar hem sayıca fazla hem de taşınma mesafesi açısından büyük değerler göstermiştir. Çubuk ve kısmen prizma şekilli çakıllar da seçici taşınma örneği göstermişlerdir; ancak yassı şekilli çakıllar gerek sayı itibariyle, gerekse taşınma mesafeleri itibariyle oldukça düşük değerler sergilemişlerdir.

İri çakıl yataklı bir akarsu kanalında tane boyut ve şeklinin seçimli yatak yükü taşınmasındaki önemi: Trout Beck Nehri, İngiltere

This paper describes field experiments designed to investigate importance of shape and size of natural clasts in bedload transport in an upland coarse-gravel bed river, the Trout Beck. Transported bedload was trapped twice on different occasion and bed material was sampled at five sections according to the procedure outlined by Wolman. Magnetic tracing experiment was carried out at the same reach to quantify the selective transport of different size and shapes of coarse river gravel and determine their spatial sorting within a natural stream channel. In general, comparison of sampled bed material and trapped bedload showed much stronger size selectivity, and to some extent, shape selectivity. Smal clasts in the trapped bedload were over-represented compared to the residual material. In the trapped bedload sphere and disc-like clasts were over-represented, while blade and rod-like clasts were under-represented. Results of the magnetic tracing experiment also showed evidence of both size and shape selectivity. Preferential movement occurred in the fine clasts (32-64 mm) size classes with tracers located along the channel thalweg moving the greatest distance. In terms of shape, during virtually all survey periods, sphere clasts were transported the greatest distance and greatest in numbers. Rod and, to some extent, discs also moved preferentially but blades moved only short transport distances and less in number.

___

  • Ashworth, P.J., and Ferguson, R.I., 1989. Size selective entrainment of bedload in gravel bed streams. Water Resources Research, 25, 627-634.
  • Bagnold, R.A., 1941. An approach to the sediment transport problem from general physics. United States Geological Survey, Professional Paper 442-I.
  • Bagnold, R.A., 1980. An empirical correlation of bedload transport rates in flume and natural rivers. Proceedings of the Royal Society of London, 372-A, 453-473.
  • Bathurst, J.C., 1987. Measuring and modelling bedload transport in channels with coarse-bed materials. In. K.S. Richards, (ed.). River Channels: Environment and Process, Oxford: Basil Blackwell, 272-294.
  • Bradley, W. C., Fahnestock, R.K., and Rowekamp, E.T., 1972. Coarse sediment transport by flood flow on Knik River, Alaska. Geological Society of America Bulletin, 83, 1261-1284.
  • Cailleux, A., 1947. L’indice d’emousse: Definition et premi`ere application: Comptes Rendus de Science. Societe Geolojique de la France, 250-252.
  • Carling, P.A., 1989. Bedload transport in two gravelbedded streams. Earth Surface Processes and Landforms, 14, 27-39.
  • Carling, P.A., Kelsey, A., and Glaister, M.S., 1992. Effect of bed roughness, particle shape and orientation on initial motion criteria. Dynamics of Gravel-bed Rivers, P. Billi, R.D. Hey, C.R. Thorne, and P. Taconni (eds), Wiley, Chichester, 23-39
  • Ergenzinger, P.J., and Custer, S.G., 1983. Determination of bedload transport using natural magnetic tracers: first experience at Squaw Creek, Gallatin Country, Montana. Water Resources Research, 19, 187-193.
  • Ferguson, R.I., Hoey, T.B., Wathen, S.J., Werrity, A., Hardwick, R.I., and Sambrook Smith, G.H., 1998. Downstream fining of river gravels: integrated field, laboratory and modelling study. Gravel Bed Rivers in the Environment, P.C. Kingeman, R.L.. Beschta, P.D. Komar and J.B. Bradley (eds), Water Resources Publications, Colorado, U.S.A, 85-113.
  • Frostick, L.E., Lucas, P.M., and Reid, I., 1984. The infiltration of fine matrices into coarse-grained alluvial sediments and its implications for stratigraphical interpretation. Journal Geological Society London, 141, 955-965.
  • Gomez, B., 1983. Temporal variation in bedload transport rates: the effect of progressive bed armouring. Earth Surface Processes and Landforms, 8, 41-54.
  • Gomez, B., 1991. Bedload Transport. Earth Science Reviews, 31, 89-132.
  • Gomez, B., and Church, M., 1989. An assessment of bedload sediment transport formulae for gravel bed rivers. Water Resources Research, 25, 1161-1186.
  • Hassan, M., and Church, M., 1990. The movement of individual grains on streambed. Dynamics of Gravel-bed Rivers, P. Billi, R.D. Hey, C.R. Thorne and P. Tacconi (eds), Wiley, Chicester, 159-175.
  • Hassan, M., Schick, A.P., and Shaw, P.A., 1999. The transport of gravel in an ephemeral sandbed river. Earth Surface Processes and Landforms, 24, 623-640.
  • Hassan, M.A., Church, M., and Ashworth, P.J., 1992. Virtual rate and mean distance of travel of individual clasts in gravel-bed channels. Earth Surface Processes and Landforms, 17, 617-627.
  • Helley, E.J., and Smith, W., 1971. Development and calibration of a pressure-difference bedload sampler. U.S. Geological Survey Openfile Report. Melno Park, California, 18 pp.
  • Hoey, T.B., 1989. Reconstruction of the recent flow history of a braided gravel river. Journal of Hydrology of New Zealand, 28, 76-97.
  • Hubbel, D.W., 1964. Apparatus and techniques for measuring bedload. US Geological Survey Water- Supply Paper, 1748.
  • Hubbel, D.W., 1987. Bedload sampling and analysing. In: C.R.Thorne, J.C. Bathurst and R.D. Hey (eds.), Sediment Transport in Gravel-Bed Rivers. Wiley, Chichester, 89-120.
  • Huddart, D., 1994. Rock-type controls on downstream changes in clast parameters in sandur systems in Southeast Iceland. Journal of Sedimentary Research, 64 (2), 215-225.
  • Jackson, W.L., and Beschta, R.L., 1982. A model of two-phase bedload transport in an Oregon Coast Range stream. Earth Surface Processes and Landforms, 7, 517-528.
  • Komar, P.D., and Li, Z., 1986. Pivoting analyses of the selective entrainment of sediments by shape and size with application to gravel threshold. Sedimentology, 33, 425-436.
  • Krumbein, W.C., 1941a. The effect of abrasion on the size, shape, and roundness of rock fragments. Journal of Geology, 49, 482-520.
  • Krumbein, W.C., 1941b. Measurements and geological significance of shape and roundness of sedimentary particles. Journal of Sedimentary Petrology, 11, 64-72.
  • Krumbein, W.C., 1942. Settling-velocity and flume-behaviour of non-spherical particles. Transactions of the American Geophysical Union, 65, 621-633.
  • Laronne, J.B., and Duncan, M.J., 1992. Bedload transport paths and gravel bar formation. Dynamics of Gravel-bed Rivers, P. Billi, R.D. Hey, C.R. Thorne and Taconni, P. (eds), Wiley, Chicester, 177-202.
  • Li, Z., and Komar, P., 1986. Laboratory measurements of pivoting angles for applications to selective entrainment of gravel in a current. Sedimentology, 33, 413-423.
  • McEwan, I.K., Jefcoate, B.J., and Willets, B.B., 1999. The grain-fluid interaction as a self stabilizing mechanism in fluvial bedload transport. Sedimentology, 49, 407-416.
  • Newson, M.D., 1981. Mountain streams.In: British Rivers. J. Lewin (ed), Wiley, Chichester, 59-89.
  • Parker, G., and Klingeman, P.C., 1982. On why gravel bed streams are paved. Water Resources Research, 18, 1409-1423.
  • Proffit, G.T., and Sutherland, A.J., 1983. Transport of non-uniform sediments. Journal of Hydraulic Research, 21, 33-43.
  • Reid, I., Frostick, L.E., and Brayshaw, A.C., 1992. Microform roughness elements and the selective entrainment and entrapment of particles in gravel-bed rivers. Dynamics of Gravel-bed Rivers, P. Billi, R.D. Hey, C.R. Thorne and P. Tacconi (eds), Wiley, Chichester, 253-275.
  • Robert, A., 1990. Boundary roughness in coarse-grained alluvial channels. Progress in Physical Geography, 14, 42-70.
  • Schmidt, H.K., and Ergenzinger, P., 1990. Magnettracer und Radiotracer – Die Leistungen neuer Meßsysteme in der fluvialen Dynamik. Die Geowissenschaften, 8, 96-102.
  • Schmidt, H.K., and Ergenzinger, P., 1992. Bedload entrainment travel lengths, step lengths, rest periods - studied with passive (iron, magnetic) and active (radio) tracer techniques. Earth Surface Processes and Landforms, 17, 147-165.
  • Schmidt, H.K., and Gintz, D., 1995. Results of bedload tracer experiments in a mountain river. River Geomorphology. In: E.J. Hickin (ed.) River Morphology, John Wiley and Sons Ltd, Chichester, 145-158.
  • Shakesby, R.A., 1989. A simple device for measuring the primary axes of clasts. British G e - omorphological Research Group, Technical Bulletin, 24.
  • Shih, S.M., and Komar, P.D., 1990. Differential bedload transport rates in a gravel bed stream: A grain size distribution aproach. Earth Surface Processes and Landforms, 15, 539-552.
  • Simons, D.B., and Simons, R.K., 1987. Differences between gravel- and sand bed rivers. in Sediment Transport in Gravel-bed Rivers, C.R. Thorne, J.C. Thorne and R.D. Hey (eds), Wiley, Chichester, 3-15.
  • Sneed, E.D., and Folk, R.L., 1958. Pebbles in the lower Colorado River, Texas: a study in particle morphogenesis. Journal of Geology, 66, 114-150.
  • Stott, T., and Sawyer, A., 1998. Clast travel distances and abrasion rates in coarse upland channels determined using magnetically tagged bedload tracers. Paper presented at the British Geomorphological Research Group Annual Conference, Tracers in Geomorphology, 18th-20th September 1998, Coventry University, 389-399.
  • Unrug, R., 1957. Recent transport and sedimentation of gravels in the Dunajec valley (western Carpathians). Acta Geologica Polonica, 7,217-257.
  • Wadell, H., 1932. Volume, shape, and roundness of rock particles. Journal of Geology, 40, 443-451.
  • Warburton, J., and Evans, M.G., 1998. Preliminary estimates of bedload yield from the Moor House National Reserve. Geomorphological studies in the North Pennines: Field Guide. British Geomorphological Research Group, 104 pp.
  • Wentworth, C.K., 1919. A laboratory and field study of cobble abrasion. Journal of Geology, 27, 507-522.
  • Wentworth, C.K., 1922. A method of measuring and plotting the shapes of pebbles. U.S. Geological Survey Bulletin, 730, 91-102.
  • Wiberg, P.L., and Smith, J.D., 1987. Calculations of critical shear stress for motion of uniform and heterogeneous sediments. Water Resources Research, 23, 1417-1480.
  • Wilcock, P.R., 1988. Methods for estimating the critical shear stress of individual fractions in mixed-sized sediment. Water Resources Research, 24, 1127-1135.
  • Wilcock, P.R., and Southard, J.B., 1989. Experimental study of incipient motion in mixed-sized sediment. Water Resources Research, 24, 1137-1151.
  • Wolman, M.G., 1954. A method of sampling coarse river- bed material. Transactions of the American Geophysical Union, 35, 951-955.
  • Zingg, T.H., 1935. Beitrag zur Schotteranalyse: Schweizische Mineralogie und Petrographie Mitteilungen, 15, 39-140.