İki Boyutlu Radyo-Manyetotellürik Verilerin Doğrusal Olmayan Yüzdelik Süzgeç ile Parçacık Sürüsü Optimizasyonu Kullanılarak Modellenmesi

Jeofizik verilerin modellenmesi amacıyla uygulanan geleneksel ters çözüm yöntemlerinde, yuvarlatıcılı ve keskin sınırlı modelleme için genelde türev tabanlı operatörler kullanılır. Bu yöntemler verilerin model parametrelerine göre kısmi türevlerinden oluşan Jacobian dizeyine gereksinim duyar. Buna karşın, Jacobian dizeyinin hesabı çoğu Global Optimizasyon uygulaması için gereksizdir ve en uygun model kısmen rastgeleleştirilmiş deneme yanılmalar ile belirlenir. Gerçekleştirilen deneme yanılmalar esnasında model parametrelerine çeşitli süzgeçler uygulanarak, elde edilecek modelin nitelikleri sınırlandırılabilmektedir. Bu çalışmada, doğrusal olmayan yüzdelik süzgeç kullanılarak görece verimli bir Global Optimizasyon yaklaşımı geliştirilmiştir. Yöntemin verimliliği, evrimsel bir Global Optimizasyon yöntemi olan Parçacık Sürüsü Optimizasyonu kullanılarak gösterilmiştir ve Radyo-Manyetotellürik verilerin iki boyutlu modellenmesi için uygulanmıştır. Yüzdelik süzgecin, elde edilen model parametrelerindeki yüksek frekanslı değişimleri atarken yapı sınırlarını koruyabildiği gözlenmiştir. İşlecin başarısı hem yapay hem de arazi veri kümeleri üzerinde gösterilmiş ve sonuçları kıyaslanmıştır.

Two Dimensional Modeling of Radio-Magnetotelluric Data Using Particle Swarm Optimization with Non-Linear Percentile Filter

Smooth and sharp boundary modeling methods, used in traditional inversion methods for modeling geophysical data, are generally implemented using derivative based operators. These methods depend on the Jacobian matrix, which consist of partial derivatives of data according to the model parameters. In contrary, calculation of the Jacobian matrix is not necessary in most Global Optimization applications and the optimum model is determined using partially randomized trial and errors. The properties of the models to be recovered can be constrained by applying various filters during these trial and errors. In this study, a relatively efficient Global Optimization approach is developed using a non-linear percentile filter. The efficiency of the method is demonstrated using Particle Swarm Optimization, which is an evolutional Global Optimization method, and applied for two-dimensional modeling of Radio-Magnetotelluric data. In the developed algorithm, Percentile filter is observed to be filtering high frequency variations in model parameters while keeping boundaries. The ability of the developed algorithm is shown on both synthetic and field datasets, and the results are compared.

___

  • Akça, I., Başokur, A.T., 2010. Extraction of structure-based geoelectric models by hybrid genetic algorithms. Geophysics 75 (1), F15–F22.
  • Akça, İ., Günther, T., Müller-Petke, M., Basokur, A.T., Yaramanci, U., 2014. Joint parameter estimation from magnetic resonance and vertical electric soundings using a multiobjective genetic algorithm. Geophys. Prospect. 62 (2), 364–376.
  • Ataman, E., Aatre, V., & Wong, K., 1981. Some statistical properties of median filters. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29(5), 1073-1075.
  • Attwa, M., Akca, I., Basokur, A. T., & Günther, T., 2014. Structure-based geoelectrical models derived from genetic algorithms: a case study for hydrogeological investigations along Elbe River coastal area, Germany. Journal of Applied Geophysics, 103, 57-70.
  • Balkaya, Ç., Göktürkler, G., Ekinci, Y. L., & Turan, S., 2014. Metaheuristics in applied geophysics. Metaheuristics and Engineering, 133.
  • Candansayar, M.E., Tezkan, B., 2008. Two-dimensional joint inversion of radiomagnetotelluric and direct current resistivity data. Geophys. Prospect. 56 (5), 737–749.
  • Clerc, M., Kennedy, J., 2002. The particle swarm–explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6 (1), 58–73.
  • deGroot-Hedlin, C., Constable, S., 1990. Occam inversion to generate smooth, 2-dimensional models from magnetotelluric data. Geophysics 55 (12), 1613–1624.
  • de Groot-Hedlin, C., & Constable, S., 2004. Inversion of magnetotelluric data for 2D structure with sharp resistivity contrasts. Geophysics, 69(1), 78-86.
  • Essa, K. S., & Munschy, M., 2019. Gravity data interpretation using the particle swarm optimisation method with application to mineral exploration. Journal of Earth System Science, 128(5), 1-16.
  • Hodgson, R. M., Bailey, D. G., Naylor, M. J., Ng, A. L. M., & McNeill, S. J., 1985. Properties, implementations and applications of rank filters. Image and Vision Computing, 3(1), 3-14.
  • Karcıoğlu, G., Gürer, A., 2019. Implementation and model uniqueness of Particle Swarm Optimization method with a 2D smooth modeling approach for Radio-Magnetotelluric data. Journal of Applied Geophysics, 169, 37-48.
  • Kelbert, A., Meqbel, N., Egbert, G. D., & Tandon, K., 2014. ModEM: A modular system for inversion of electromagnetic geophysical data. Computers & Geosciences, 66, 40-53.
  • Kennedy, J., 2003. Bare bones particle swarm. Proc. IEEE SIS, Apr. 2003, pp. 80–87.
  • Li, X., Yao, X., 2011. Cooperatively Coevolving Particle Swarms for large Scale Optimization. IEEE Trans. Evol. Comput. 16 (2), 210–224.
  • Mehanee, S., Zhdanov, M., 2002. Two‐dimensional magnetotelluric inversion of blocky geoelectrical structures. Journal of Geophysical Research: Solid Earth, 107(B4), EPM-2.
  • Montes de Oca, M.A., Van den Enden, K., Stützle, T., 2008. Incremental particle swarmguided local search for continuous optimization. In: Blesa, M.J., vd. (Eds.), LNCS 5296. Proceedings of the InternationalWorkshop on HybridMetaheuristics. Springer, Berlin, Germany, pp. 72–86.
  • Montesinos, F.G., Arnoso, J., Vieira, R., 2005. Using a genetic algorithm for 3-D inversion of gravity data in Fuerteventura (Canary Islands). Int. J. Earth Sci. 94 (2), 301–316.
  • Moorkamp,M., Jones, A.G., Eaton, D.W., 2007. Joint inversion of teleseismic receiver functions and magnetotelluric data using a genetic algorithm: are seismic velocities and electrical conductivities compatible? Geophys. Res. Lett. 34, L16311.
  • Moorkamp,M., Jones, A.G., Fishwick, S., 2010. Joint inversion of receiver functions, surface wave dispersion and magnetotelluric data. J. Geophys. Res. 115 (2010), B04318.
  • Özyıldırım, Ö., Candansayar, M. E., Demirci, İ., & Tezkan, B., 2017. Two-dimensional inversion of magnetotelluric/radiomagnetotelluric data by using unstructured mesh. Geophysics, 82(4), E197-E210.
  • Pallero, J.L.G., Fernández-Martínez, J.L., Bonvalot, S., Fudym, O., 2017. 3D gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization. J. Appl. Geophys. 139, 338–350.
  • Pekşen, E., Yas, T., Kayman, A. Y., & Özkan, C., 2011. Application of particle swarm optimization on self-potential data. Journal of Applied Geophysics, 75(2), 305-318.
  • Pekşen, E., Yas, T., & Kıyak, A., 2014. 1-D DC resistivity modeling and interpretation in anisotropic media using particle swarm optimization. Pure and Applied Geophysics, 171(9), 2371-2389.
  • Portniaguine, O., & Zhdanov, M. S., 1999. Focusing geophysical inversion images. Geophysics, 64(3), 874-887.
  • Sasaki, Y., 1989. Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data. Geophysics 54, 254–262.
  • Sen, M. K., Stoffa, P. L., 2013. Global optimization methods in geophysical inversion. Cambridge University Press. Streich, R., 2003. Geophysical Prospecting of Suspected Holocene Fault Activity in the Lower Rhine Embayment. Ph.D. thesis. Potsdam University.
  • Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature methods, 17(3), 261-272.