Dik Yamaçlardaki Kaya Düşme Tehlikesinin Değerlendirilmesi: Ermenek (Karaman, Turkiye)

Ermenek, topoğrafik özellikleri nedeniyle Karaman (Turkiye) ili sınırları içerisindeki en ilginç yerleşim alanıdır. Yerleşim yeri, 1250 m’den 1850 m’ye yükselen eklemli kireçtaşlarından oluşan oldukça dik, sarp kayalıkların kuzey tarafında yer almaktadır. Bunun yanı sıra, yaklaşık 90° eğime sahip olan bu şevler, kaya birimlerin litolojik ve mühendislik özellikleri ile iklim etkisi nedeniyle kaya düşmesi kaynak alanlarıdır. Şimdiye kadar, Ermenek’te kaya düşmesi nedeni ile yaklaşık 500 konut ağır hasar görmüş ve can kaybı ile sonuçlanan kaya düşmeleri meydana gelmiştir. Çalışma alanındaki kaya düşmelerine neden olan etmenler; süreksizlikler, litolojik değişiklikler, iklim ve donma-çözülme süreci olarak tanımlanabilir. Bu çalışmada; yürütülen yoğun ve detaylı süreksizlik analizleri ile asılı, ayrılmış ve düşmüş blokların yerleri ve boyutları saptanmış, ayrıca jeolojik, morfolojik ve topoğrafik özellikleri belirlenmiştir. Buna ek olarak, kaya düşmesi tehlikesi, 10 profilde iki boyutlu kaya düşmesi analizleri ile değerlendirilmiştir. Kaya düşmesi analizi sırasında, her bir profil için çeşitli boyutlarda blokların kaçma mesafesi, sıçrama yüksekliği, kinetik enerji ve hızları RocFall v4.0 paket programı kullanılarak belirlenmiştir. Kaya düşmesi analizinden elde edilen sonuçlar, muhtemel kaya düşme tehlike bölgelesi alanlarını belirlemek için kullanılmış ve kaya düşmesi kaynak alanları yorumlanmıştır. Yapılan kaya düşmesi analizleri, saha çalışmaları ve laboratuar deney sonuçlarına göre, kaya düşmesi tehdidi altında olan alanlar için koruyucu ve önleyici yöntemler önerilebilir. Ancak, literatürdeki en yaygın yöntemler olan; hendekler, istinat duvarları, tel örgüler, gerdirme ağlar, kaya saplamaları vb., çalışma alanının topoğrafik, atmosferik ve litolojik özellikleri nedeniyle yetersiz kalmaktadır. Bu nedenle, bölgede yaşayan sakinlerin daha güvenli olabilmeleri amacıyla, öncelikle tehlike bölgeleri tahliye edilmeli ve sonrasında, güvenlik önlemleri alınarak, erişilebilen yerlerde asılı bloklar temizlenmelidir.

Assessment of Rockfall Hazard on Steep Slopes: Ermenek (Karaman, Turkey)

Ermenek is a extraordinary settlement area due to its topographical features in Karaman (Turkey). The city is located in the northernside of the steep cliffs, which are formed of jointed limestone that abruptly increases from 1250 m to 1850 m. Moreover,these cliffs, having a slope dip of nearly 90°, are the main rockfall source areas due to their lithological characteristics, climaticeffects and the engineering properties of rock units. Up to now, depending on the rockfall event, nearly 500 residences havebeen severely damaged, and the loss of life has occurred in Ermenek. The rockfall phenomenon is initiated by discontinuities,lithological changes, weathering and the freeze-thaw process in the study area. In this study, extensive fieldwork including thedetermination of locations and dimensions of hanging, detached and fallen blocks; a detailed discontinuity survey; and the descriptionof geological, morphological and topographical characteristics was performed. Additionally, rockfall hazard has beenevaluated by two-dimensional rockfall analysis involving 10 profiles. While these profiles were determined, the locations wherethe most of the fallen blocks are observed are selected in the field study. During the rockfall analysis, run-out distance, bounceheight, kinetic energy and the velocities of various sizes of blocks for each profile were determined through the use of RocFallv4.0 software. The results obtained from the rockfall analysis were used to map the areas of possible rockfall hazard zones, androckfall source areas were interpreted.According to the rockfall analysis, field study and laboratory testing, protective and preventive recommendations can be suggestedfor the areas threatened by rockfall. However, the most widely known remedial measures in literature, such as trenches,retaining walls (barriers), wire mesh, cable/stretching nets and rock bolting, etc., are not sufficient in the study area due to itstopographical, atmospheric and lithological features. For these reasons, hanging blocks in the reachable locations can be removed,the total evacuation of the danger zone may applied, and then taking safety measures in this area to make it safer forthe residents.

___

  • Zorlu K, Tunusluoglu MC, Gorum T, Nefeslioglu HA, Yalcin A, Turer D, Gokceoglu C., 2011. Landform effect on rockfall and hazard mapping in Cappadocia (Turkey). Environmental Earth Science, 62(8), 1685–1693.
  • Zorlu, K., Taga, H., 2009. Effects of geologic factors on rockfall events: Ermenek (Karaman), Turkey. EGU General Assembly 2008, Wien, Austria, Abstract No. EGU2009- A-2882.
  • Yurtsever, T.Ş., Ilgar, A. ve Gürçay, B., 2005. Ermenek (Karaman)-Mut-Gülnar (İçel) Arasında Kalan Tersiyer Havzasının Jeolojik Ve Sedimantolojik İncelenmesi. MTA Rapor No:10776 (Unpublised).
  • Yılmaz I, Yildirim M, Keskin I., 2008. A method for mapping the spatial distribution of RockFall computer program analyses results using ArcGIS software. Bulletin of Engineering Geology and Environment, 67, 547–554.
  • Whalley WB., 1984. Rockfalls. In: Brunsden D, Prior DB (eds) Slope stability. Wiley, New York, pp 217–256.
  • Varnes DJ., 1978. Slopemovement types and processes. In: Schuster RL, Krizek RJ (ed) Landslides, analysis and control. Transportation and Road Research Board, National Academy of Science, Washington, DC, pp 11–33.
  • Ulusay R, Gokceoglu C, Topal T, Sonmez H, Tuncay E, Erguler ZA, Kasmer O., 2006. Assessment of environmentel and engineering geological problems for the possible re-use of an abandoned rock-hewn settlement in Ürgüp (Cappadocia) Turkey. Environmental Geololgy, 50, 473–494.
  • Tunusluog˘lu MC, Zorlu K., 2009. Rockfall hazard assessment in a cultural and natural heritage (Ortahisar Castle, Cappadocia, Turkey). Environmental Geology, 56(5), 963–972.
  • Topal T, Akin M. K., Akin M., 2012. Rockfall hazard analysis for an historical Castle in Kastamonu (Turkey), Natural Hazards 62, 255-274.
  • Topal T, Akin M, Ozden AU., 2007. Assessment of rock fall hazard around Afyon Castle, Turkey. Environmental Geololgy, 53, 177–189.
  • Taga, H., Zorlu, K., 2007. Ermenek İlçesindeki (Karaman) Kaya Düşmelerinin Kinetik Enerji Dağılımı Açısından Değerlendirilmesi. 60. Türkiye Jeoloji Kurultayı Bildiri Özleri Kitabı, s.317.
  • Şafak, Ü., 1997. Karaman yöresi Üst Miyosen-Pliyosen istifinin ostrakoda faunası ve ortamsal yorumu. MTA Dergisi, 119, 89-102.
  • Schweigl J, Ferretti C, Nossing L., 2003. Geotechnical characterization and rockfall simulation of slope: a practical case study from South Tyrol (Italy). Engineering Geology, 67, 281– 296.
  • Rocscience 2002. RocFall software—for risk analysis of falling rocks on steep slopes. Rocscience user’s guide, p 59.
  • Robotham ME, Wang H, Walton G., 1995. Assessment of risk from rockfall from active and abandoned quarry slopes. Transactions of the Institution of Mining and Metallurgy, 104(1–4), A25–A33.
  • Pfeiffer TJ, Bowen TD., 1989. Computer simulation of rockfalls.Bulletin of the International Association of Engineering Geology, 1, 135– 146.
  • Perret S, Dolf F, Kienholz H., 2004. Rockfalls into forest: analysis and simulation of rockfall trajectories-consideration with respect to mountainous forest in switzerland. Landslides, 1,123–130.
  • Özgül, N., 1976.Torosların bazı temel jeoloji özellikleri. Türkiye Jeoloji Kururultayı Bülteni, Ankara, 19, 65-78.
  • Okura Y, Kitahara H, Sammori T, Kawanami A., 2000. The effects of rockfall volume on runout distance. Engineering Geology, 58,109–124.
  • Keskin I., 2013. Evaluation of rock falls in an urban area: the case of Boğazici (Erzincan/Turkey). Environmental Earth Science, 70, 1619– 1628.
  • Katz O, Reichenbach P, Guzzetti F., 2011. Rock fall hazard along the railway corridor to Jerusalem, Israel in the Soreq and Refaim valleys. Natural Hazards, 56, 649–665.
  • Jones CL, Higgins JD, Andrew RD., 2000. Colorado rockfall simulation program version 4.0. Colorado Department of Transportation, Colorado Geological Survey.
  • Ilgar, A. and Nemec, W., 2005. Early Miocene lacustrine deposits and sequence stratigraphy of the Ermenek Basin, Central Taurides, Turkey. Sedimentary Geology, 173, 233–275.
  • Hoek E., 2007. Practical rock engineering. Course note.
  • Hoek E.,1987. Rockfall—a program in BASIC for the analysis of rockfall from slopes. Unpublished note, Golder Associates/ University of Toronto, Canada.
  • Gul M and Eren M., 2003. The sedimentary characteristics of Dagpazarı patch reef (Middle Miocene, Mut-Icel/Turkey). Carbonates and Evaporites, 18 (1), 51-62.
  • Guzzetti F, Reichenbach P, Wieczorek GF., 2003. Rockfall hazard and risk assessment in the Yosemite Valley, California, USA. Natural Hazards and Earth System Science, 3, 491–503.
  • Guzzetti F, Crosta G, Detti R, Agliardi F., 2002. STONE: a computer program for the three-dimensional simulation of rockfalls. Computer Geoscience, 28, 1079–1093.
  • Falcetta JL.,1985. Un nouveau mod’’ele de calcul de trajectoires de blocs rocheux. Revue Francaise de Geotechnique, 30, 1–17.
  • Evans SG, Hungr O.,1993. The assessment of rockfall hazard at the base of talus slopes. Canadian Geotechnical Journal, 30, 620–636.
  • Duncan C. Wyllie, 2014. Calibration of rock fall modeling parameters, International Journal of Rock Mechanics and Mining Sciences, 67, 170-180.
  • Dorren LKA, Maier B, Putters US, Seijmonsbergen AC., 2004. Combining field and modelling techniques to assess rockfall dynamics on a protection forest hillslope in the European Alps Geomorphology, 57, 151–167.
  • Dorren LKA., 2003. A review of rockfall mechanics and modeling approaches. Progress in Physical Geography, 27(1), 69–87.
  • Chen H, Chen RH, Huang T.,1994. An application of an analytical model to a slope subject to rockfalls Bulletin of Engineering Geology and Environment, 31, 447–458.
  • Chau KT, Wond RHC, Lee CF.,1996. Rockfall problems in Hong Kong and some new experimental results for coefficient of restitution. International Journal of Rock Mechanics and Mining Science, 35, 662–663.
  • Buzzi O, Giacomini A, Spadari M., 2012. Laboratory investigation on high values of restitution coefficient Rock Mechanics and Rock Engineering 45, 35-43.
  • Bourrier, F., Berger, F., Tardif, P., Dorren, L. and Hungr, O., 2012. Rockfall rebound: comparison of detailed field experiments and alternative modelling approaches. Earth Surface Process. Landforms.
  • Bozzolo D, Pamini R., 1986. Modello matematico per lostudio della caduta dei massi. Laboratorio di FisicaTerrestre ICTS. Dipartimento Pubblica Educazione, Lugano-Trevano.
  • Binal A, Ercanog˘lu M., 2010. Assessment of rockfall potential in the Kula (Manisa, Turkey) Geopark Region. Environmental Earth Science, 61, 1361–1373.
  • Bassato G, Cocco S, Silvano S., 1985. Programma di simulazione per lo scoscendimento di blocchi rocciosi. Dendronatura, 6(2), 34–36.
  • Bassant, P., van Buchem, F.S.P., Strasser, A. and Görür N., 2005. The stratigraphic architecture and evolution of the Burdigalian carbonate–siliciclastic sedimentary systems of the Mut basin, Turkey. Sedimentary Geology, 173, 187-232.
  • Azzoni A, de Freitas MH.,1995. Experimentally gained parameters, decisive for rockfall analysis. Rock Mechanics and Rock Engineering 28(2), 111–124.
  • Agliardi F, Crosta GB., 2003. High resolution three-dimensional numerical modelling of rockfalls. International Journal of Rock Mechanics and Mining Science, 40, 455–471.