Development of reactive digital printing process for cellulosic fabrics

Development of reactive digital printing process for cellulosic fabrics

In this study, the development processes of reactive digital printing for cellulosic fabrics are discussed. In the study, viscose fabric qualities were evaluated with the same content and different impregnation process numbers, according to pH value, washing fastness, rubbing fastness, water fastness, and perspiration fastness tests, after digital printing application under the same conditions. In addition, print patterns were visually examined. It has been determined that the visual quality of the fabrics with one pass impregnation is better than two passes impregnations and the test results have similar values for all samples. Viscose fabric qualities, with one pass application, were tested by applying different recipes and the optimum recipe was determined by making a cost analysis and sustainability aspect. It was determined that the wet rubbing fastness values were low. Fabric pH test results were determined to be in the range of 5.5-7.5, as expected. Washing, water, and perspiration fastness values were determined to be in the range of 4-5 as expected.

___

  • Ujiie H (2006) Digital printing of textiles. The Woodhead Publishing Ltd., Cambridge p.202-204
  • Kanık M (2004) Tekstil teknolojisi ve kimyasındaki son gelişmeler sempozyumu. s.191-203
  • Leelajariyakul S, Noguchi H, Kiatkamjornwong S (2008) Surface-modified and micro-encapsulated pigmented inks for ink jet printing on textile fabrics. Progress in Organic Coatings. 62:145-161. https://doi.org/10.1016/j.porgcoat.2007.10.005
  • Kuo CH, Shiu JW, Rwei SP (2022) Preparation and characterization of PMMA encapsulated carbon black for water-based digital jet printing ink on different fibers of cotton and PET. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648, 129450.
  • Kuang M, Wang L, Song Y (2014) Controllable printing droplets for high-resolution patterns. Advanced materials (Deerfield Beach, Fla.). 26. 10. https://doi.org/1002/adma.201305416.
  • Menard E, Meitl MA, Sun Y, Park JU, Shir DJ, Nam YS, Jeon S, Rogers JA (2007) Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem Rev 107(4):1117-60. https://doi.org/10.1021/cr050139y.
  • Nie Z, Kumacheva E (2008) Patterning surfaces with functional polymers. Nature Materials 7:277-90. https://doi.org/10.1038/nmat2109
  • Hauser P, Tabba AH (2001). Improving the environmental and economic aspects of cotton dyeing using a cationised cotton. Review of Progress in Coloration and Related Topics 117:282-288.
  • Khatri A, Peerzada M, Mohsin M, White M (2015) A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution. Journal of Cleaner Production 87:50-57. https://doi.org/10.1016/j.jclepro.2014.09.017
  • Montazer M, Malek MAR, Rahimi A. (2007) Salt free reactive dyeing of cationized cotton. Fibers and Polymers 8:608-612. https://doi.org/10.1007/BF02875997
  • Nallathambi A, Rengaswami GDV (2016) Salt-free reactive dyeing of cotton hosiery fabrics by exhaust application of cationic agent. Carbohydr Polym 5(152):1-11. https://doi.org/10.1016/j.carbpol.2016.06.087
  • Wang L, Ma W, Zhang S, Teng X, Yang J (2009) Preparation of cationic cotton with two-bath pad-bake process and its application in salt-free dyeing. Carbohydrate Polymers 78:602-608. https://doi.org/10.1016/j.carbpol.2009.05.022
  • Aston SO, Provost JR, Masselink H. (2008) Jet printing with reactive dyes. Journal of the Society of Dyers and Colourists 109(4):147–152. https://doi.org/10.1111/J.1478-4408.1993.TB01546.X
  • Tyler DJ (2005) Textile digital printing technologies. Textile Progress 37(4):1-65.
  • T.C. Millî Eğitim Bakanlığı (2013) Tekstil teknolojisi, dijital baskıya hazırlık, Ankara, 2013.
  • Eser B, Ozguney A, Ozerdem A (2012) Investigation of the usage of different thickening agents in ink-jet printing with reactive dyes. Industria textilă 63:85-90.
  • Choi PSR, Yuen CWM, Ku SKA, Kan CW (2005) Digital ınk-jet printing for chitosan-treated cotton fabric. In: Fibers and Polymers 6(3):229-234. https://doi.org/10.1007/BF02875647
  • Gutjahr H, Koch RR (1994) Direct print coloration. Textile Printing, 2nd Edn., Ed. Miles, L.W.C., Bradford: SDC, pp 139-195.
  • Achwal W. B (2002) Textile chemical principle of digital textile printing. Colourage, 49(12):33.
  • Chen W, Wang G, Bai Y (2002) Best for wool fabricprinting – digital inkjet. Textile Asia 33(12):37.
  • Rüzgar A (2019) Rotasyon ve dijital reaktif baskıların çevresel etkilerinin yaşam döngüsü analizi tekniğiyle karşılaştırılması, Yüksek Lisans Tezi, Tekstil Mühendisliği Anabilim Dalı, Fen Bilimleri Enstitüsü, Bursa Uludağ Üniversitesi, Bursa, Türkiye.
  • Marianofreire E (2006) Ink jet printing technology (CIJ/DOD): Digital Printing of Textiles, Editor: Ujiie, H Woodhead Publishing Limited, Cambridge, England, pp 29- 52.
  • Kanık M (2013) Dijital baskı teknolojileri ve tekstil sanayindeki uygulamaları ders notları. Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Tekstil Mühendisliği, Bursa, Türkiye.
  • Acar S (2020) Viskon ve viskon elastan karışım kumaşlarının dijital inkjet baskısına yeni bir yaklaşım, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Tekstil Eğitimi Anabilim Dalı, Tekstil Eğitimi Programı, Marmara Üniversitesi, İstanbul, Türkiye.
Yenilikçi Mühendislik ve Doğa Bilimleri-Cover
  • Başlangıç: 2021
  • Yayıncı: İdris Karagöz
Sayıdaki Diğer Makaleler

Detecting acetone from breath using a PrFeO3-doped PANi/TiO2-coated PAN nanofiber sensor for non-invasive diabetic diagnosis

Nesibe YEŞİLDAĞ, Ömer Faruk ÜNSAL, Ramazan GÖMEÇ, Ayşe BEDELOĞLU

Investigation of effect of chestnut sawdust on mechanical properties of epoxy matrix composites

İlyas KARTAL, Zerrin ÖZCAN

Eksik tahrikli döner ters sarkaç sisteminin geribeslemeli doğrusallaştırma tabanlı kademeli kontrolü

Aykut KOCAOĞLU

Preparation and compatibilization effect of β-cyclodextrin end-functionalized polystyrene for immiscible PCL/PS blends

Neşe ÇAKIR YİĞİT

Converting polyolefin fibres into CO2 adsorbent by radiation induced grafting

Noor Ashikin MOHAMAD, Nur Afifah ZUBAIR, Mohamed Mahmoud NASEF, Teo Ming TING

Development of reactive digital printing process for cellulosic fabrics

Halil İbrahim TURGUT, Aslı BALÇAK GİRGİN, Özlem YARAR

Haloysit içeren stiren-bütadien kauçuk nanokompozitlerinin hazırlanması ve mekanik özelliklerinin incelenmesi

Seda BEKİN AÇAR, Mehmet Atilla TASDELEN, Bağdagül KARAAĞAÇ

PVDF nanofibers composite containing core-shell (ZnO@ZIF-8) for use in smart textile applications

Miladi ATIGHI, Moein JALALI, Mahdi HASANZADEH, Seyed Mansour BIDOKI

Characterization of heating elements of different dimensions used in resistance welding of thermoplastic matrix composite materials

Hakan ÖZTÜRKMEN, Yusuf USTA, Serkan TOROS, Fahrettin ÖZTÜRK

Effect of PVDF content on the filtration performance and mechanical properties of melt-blown PP fibrous webs

Andinet Kumella ETİCHA, Yasin AKGÜL, Ayben PAKOLPAKÇİL, Oğuz Kağan ÜNLÜ, Harun ÇUĞ, Ali KILIÇ