OECD Ülkelerinde Enerji Kaynakları ve CO2 Emisyonu arasındaki İlişkinin STIRPAT Modeli ile incelenmesi

Dünya genelinde gerek nüfus gerekse üretim artışları küresel enerji tüketiminin her geçen yıl artmasına neden olmaktadır. Bu talebi karşılayabilmek için yenilebilir ve yenilenebilir olmayan enerji kaynakları ile enerji üretimi, bu üretimin iktisadi ve çevresel çıktılarının değerlendirilmesi ülkelerin gündemini oluşturmaktadır. Küresel iklim değişikliği ve getirdiği olumsuzluklar karbondioksit (CO2) emisyonu artışını belirleyen temel faktörlerinde irdelenmesini gerektirmektedir. Bu kapsamda çalışmada literatürde geniş yer bulan STIRPAT (Stochastic Impacts by Regression on Population, Affluance and Technology) modeli yenilenebilir ve yenilenebilir olmayan enerji üretim değişkenlerini de dahil ederek 23 OECD ülkesi için 1990-2019 dönemine ait veriler kullanılarak panel zaman serisi yöntemleri ile analiz edilmiştir. Elde edilen bulgulara göre uzun dönemde sırasıyla enerji yoğunluğundaki, yenilenebilir olmayan enerji üretimindeki ve yenilenebilir enerji üretimindeki %1’lik artış CO2 emisyonunu sırasıyla %1,129, %1,047 ve %0,032 arttırmaktadır. Ayrıca nedensellik testi bulgularına göre sırasıyla nüfus, enerji yoğunluğu, yenilenebilir ve yenilebilir olmayan enerji üretiminden CO2 emisyonuna doğru istatistiksel açıdan anlamlı bir nedensellik ilişkisi bulunmuştur.

___

  • Akay, E. Ç., Abdieva, R., & Oskonbaeva, Z. (2015). Yenilenebilir Enerji Tüketimi, İktisadi Büyüme ve Karbondioksit Emisyonu Arasındaki Nedensel İlişki: Orta Doğu ve Kuzey Afrika Ülkeleri Örneği. International Conference on Eurasian Economies.
  • Alataş, S., & Akın, T. (2022). The impact of income inequality on environmental quality: a sectoral-level analysis. Journal of Environmental Planning and Management, 1-26.
  • Ang, B.W., 1999. Is the energy intensity a less useful indicator than thecarbon factor in the study of climate change?. Energy Policy , 27,943:946.
  • Apergis, N., Payne, J. E., Menyah, K., & Rufael, Y. W. (2010). On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth. Ecological Economics Journal, 69(11): 2255-2260.
  • Aydın, C., & Esen, Ö. (2017). The Validity of the Environmental Kuznets Curve Hypothesis for Co2 Emissions in Turkey: New Evidence from Smooth Transition Regression Approach. Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 14(39): 101-116.
  • Breusch, T. S., & Pagan, A. R. (1980). The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics. The Review of Economic Studies, 47(1), 239. https://doi.org/10.2307/2297111
  • Büyükyılmaz, A., & Mert, M. (2015). CO2 Emisyonu, Yenilenebilir Enerji Tüketimi ve Ekonomik Büyüme Arasındaki İlişkinin MS-VAR Yaklaşımı İle Modellenmesi: Türkiye Örneği. Zeitschrift Für Die Welt Der Türken Journal of World of Turks, 7(3): 103-117.
  • Chiu, Y. B. (2017). Carbon dioxide, income and energy: Evidence from a non-linear model. Energy Economics, 61, 279-288.
  • Coondoo D, Dinda S. Causality between income and emission: a country group-specific econometric analysis. Ecol Econ 2002;40(3):351 – 67.
  • Dietz, T. and E. A. Rosa. 1997. 'Effects of population and affluence on CO2 emissions," Proceedings of the National Academy of Sciences, USA 94: 17 5-179.
  • Dong, K., Dong, X., & Dong, C. (2019). Determinants of the global and regional CO2 emissions: what causes what and where?. Applied Economics, 51(46), 5031-5044.
  • Ehrlich, Paul R. & Holdren, J.P. (1971). Impact of population growth. American Association for the Advancement of Science, 171(3977), 1212-1217.
  • EIA (International Energy Information Administration) 2021. “International Energy Outlook, 2021.” https://www.eia.gov/outlooks/ieo/ Erişim Tarihi: 01.05.2022.
  • Fan, Y., Liu, L. C., Wu, G., & Wei, Y. M. (2006). Analyzing impact factors of CO2 emissions using the STIRPAT model. Environmental Impact Assessment Review, 26(4), 377-395.
  • Farhani, S. (2013). Renewable Energy Consumption, Economin Growth and CO2 emissions: Evidence from selected MENA countries. Energy Economics Letters, 1(2), 24–41.
  • Global Carbon Budget (2021). “Global Carbon Budget Report, 2021.” https://www.globalcarbonproject.org/carbonbudget/index.htm Erişim Tarihi: 01.10.2022
  • Gökmenoğlu, K., & Taspinar, N. (2015). The relationship between Co2emissions, energy consumption, economic growth and FDI: the case of Turkey. The Journal of International Trade &Amp; Economic Development, 25(5), 706–723. https://doi.org/10.1080/09638199.2015.1119876
  • Irandoust, M. (2016). The renewable energy-growth nexus with carbon emissions and technological innovation: Evidence from the Nordic countries. Ecological Indicators, 69, 118–125. https://doi.org/10.1016/j.ecolind.2016.03.051
  • Khezri, M., Heshmati, A., & Khodaei, M. (2022). Environmental implications of economic complexity and its role in determining how renewable energies affect CO2 emissions. Applied Energy, 306, 117948.
  • Liu, X., Zhang, S., & Bae, J. (2017). The impact of renewable energy and agriculture on carbon dioxide emissions: Investigating the environmental Kuznets curve in four selected ASEAN countries. Journal of Cleaner Production, 164, 1239–1247. https://doi.org/10.1016/j.jclepro.2017.07.086
  • Magazzino, C., & Cerulli, G. (2019). The determinants of CO2 emissions in MENA countries: a responsiveness scores approach. International Journal of Sustainable Development & World Ecology, 26(6), 522-534.
  • Maslyuk, S., & Dharmaratna, D. (2020). Renewable Electricity Generation, CO2 Emissions and Economic Growth: Evidence from Middle-Income Countries in Asia. Studies of Applied Economics, 31(1), 217–244. https://doi.org/10.25115/eea.v31i1.3267
  • Jebli, M. B., & Youssef, S. B. (2017). The role of renewable energy and agriculture in reducing CO2 emissions: Evidence for North Africa countries. Ecological indicators, 74, 295-301.
  • Meyerson, F. A. (1998). Population, carbon emmissions, and global warming: The forgotten relationship at Kyoto. Population and development review, 115-130.
  • Ozturk, I., & Acaravci, A. (2010). CO2 emissions, energy consumption and economic growth in Turkey. Renewable and Sustainable Energy Reviews, 14(9), 3220–3225. https://doi.org/10.1016/j.rser.2010.07.005
  • Pedroni, P. (2001). Purchasing power parity tests in cointegrated panels. Review of Economics and statistics 83.4 (2001): 727-731.
  • Pesaran, M. H. (2021). General diagnostic tests for cross-sectional dependence in panels. Empirical economics, 60(1), 13-50.
  • Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence. Journal of Applied Econometrics, 22(2), 265–312. https://doi.org/10.1002/jae.951
  • Pesaran, M. H., & T. Yamagata. 2008. Testing slope homogeneity in large panels. Journal of Econometrics 142(1): 50–93.
  • Pesaran, M. H., Ullah, A., & Yamagata, T. (2008). A bias-adjusted LM test of error cross-section independence. The Econometrics Journal, 11(1), 105–127. https://doi.org/10.1111/j.1368-423x.2007.00227.x
  • Ritchie, H., Roser, M. & Rosado, P. (2020). CO₂ and Greenhouse Gas Emissions. Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/co2-and-greenhouse-gas-emissions'
  • Roca, J. & Alcántara, V. (2001). Energy intensity, CO2 emissions and the environmental Kuznets curve. The Spanish case. Energy policy 29.7 (2001): 553-556.
  • Saidi, K., & Omri, A. (2020). The impact of renewable energy on carbon emissions and economic growth in 15 major renewable energy-consuming countries. Environmental research, 186, 109567.
  • Saraç, Ş., & Yağlıkara, A. (2019). The impact of globalization and financial development on environment within the context of STIRPAT model: The case of Turkey. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 19(1), 55-64.
  • Silva, S., Soares, I., & Pinho, C. (2012). Teh impact of renewable energy sources on economic growth and CO2 emissions : a SVAR approach. European Research Studies Journal, 15(4), 133-144.
  • Sugiawan, Y., & Managi, S. (2016). The environmental Kuznets curve in Indonesia: Exploring the potential of renewable energy. Energy Policy, 98, 187–198. https://doi.org/10.1016/j.enpol.2016.08.029
  • Topdağ, D., Acar, T. & Celik, İ. E. (2020). Estimation of the Global-Scale Ecological Footprint within the Framework of STIRPAT Models: the quantile regression approach. İstanbul İktisat Dergisi, 70(2), 339-358.
  • Wang, Z. X., Hao, P., & Yao, P. Y. (2017). Non-Linear Relationship between Economic Growth and CO2 Emissions in China: An Empirical Study Based on Panel Smooth Transition Regression Models. International Journal of Environmental Research and Public Health, 14(12), 1568. https://doi.org/10.3390/ijerph14121568
  • Westerlund, J., & Edgerton, D. L. (2007). A panel bootstrap cointegration test. Economics Letters, 97(3), 185–190. https://doi.org/10.1016/j.econlet.2007.03.003
  • Westerlund, J. (2007b). Testing for error correction in panel data. Oxford Bulletin of Economics and Statistics, 69(6), 709–748. https://doi.org/10.1111/j.1468-0084.2007.00477.x