Biyolojik ve Biyolojik Olmayan Ağlar Üzerine

Genel bir sınıflandırmayla, dünyada iki tür ağ vardır: Biyolojik ve biyolojik olmayan ağlar. Biyolojik ağların yapısı değiştirilememektedir. Ancak sosyal ağlar, teknolojik ağlar ve ulaşım ağları gibi biyolojik olmayan ağların mimarileri tasarlanabilir ve bu ağlar insanlar tarafından değiştirilebilir. Ağlar; rassal ağlar, küçük dünya ağları ve ölçekten bağımsız ağlar olarak sınıflandırılabilir. Ancak küçük dünya ağları ve ölçekten bağımsız ağlar ile ilgili sorunlarımız vardır. Bazı yazarların sorduğu gibi, “Küçük dünya ağları ne kadar küçüktür ve diğer modeller ile karşılaştırıldığında nasıldır?”. Ölçekten bağımsız ağların yaygın mı yoksa nadir mi olduğu konusu halen tartışılmaktadır. Bu çalışmadaki temel amaç biyolojik ve biyolojik olmayan ağların temel tanımlayıcı özelliklere sahip olup olmadığının araştırılmasıdır. Özellikle biyolojik ağların özelliklerini detaylı bir şekilde belirleyebilirsek, daha sağlam ve etkili biyolojik olmayan ağları tasarlama şansımız olabilir. Ancak bu araştırma sonuçları, biyolojik ağların özelliklerine ilişkin tartışmaların henüz tamamlanmadığını göstermektedir.

On Biological And Non-Biological Networks

With a general classification, there are two types of networks in the world: Biological and non-biological networks. We are unable to change the structure of biological networks. However, for networks such as social networks, technological networks and transportation networks, the architectures of non-biological networks are designed and can be changed by people. Networks can be classified as random networks, small-world networks and scale-free networks. However, we have problems with small-world networks and scale free networks. As some authors ask, “how small is a small-world network and how does it compare to other models?” Even the issue of scale-free networks are whether abundant or rare is still debated. Our main goal in this study is to investigate whether biological and non-biological networks have basic defining features. Especially if we can determine the properties of biological networks in a detailed way, then we may have the chance to design more robust and efficient non-biological networks. However, this research results shows that discussions on the properties of biological networks are not yet complete.

___

  • Albert, Réka, and Albert László Barabási. 2002. “Statistical Mechanics of Complex Networks.” Reviews of Modern Physics 74 (1): 47–97.
  • Alm, Eric, and Adam P. Arkin. 2003. “Biological Networks.” Current Opinion in Structural Biology 13 (2): 193–202. https://doi.org/10.1016/S0959-440X(03)00031-9.
  • Almaas, Eivind, Alexei Vazquez, and Albert-laszlo Barabasi. 2013. “Scale-Free Networks in Biology.” Biological Networks 3. https://doi.org/10.1142/9789812772367.
  • Aloy, Patrick, and Robert B. Russell. 2004. “Taking the Mystery out of Biological Networks.” EMBO Reports 5 (4): 349–50. https://doi.org/10.1038/sj.embor.7400129.
  • Amaral, L. A.N., A. Scala, M. Barthélémy, and H. E. Stanley. 2000. “Classes of Small-World Networks.” Proceedings of the National Academy of Sciences of the United States of America 97 (21): 11149–52. https://doi.org/10.1073/pnas.200327197.
  • Atay, Yılmaz. 2018. “Karmaşık Ağlardaki Modül Yapılarının ve Anlamlı Alt-Ağların Tespiti.” Doktora Tezi: Selçuk Üniversitesi, Konya. https://doi.org/10.1017/CBO9781107415324.004.
  • Bansal, Shweta, Shashank Khandelwal, and Lauren A. Meyers. 2009. “Exploring Biological Network Structure with Clustered Random Networks.” BMC Bioinformatics 10: 405. https://doi.org/10.1186/1471-2105-10-405.
  • Barabási, Albert-lászló. 2016. “Network Robustness.” In Network Science. Cambridge University Press. https://barabasi.com/f/619.pdf.
  • Barabási, Albert-László, and Réka Albert. 1999. “Emergence of Scaling in Random Networks.” Science 286 (5439): 509–12. www.sciencemag.orghttp://science.sciencemag.org/.
  • Barabási, Albert László, Réka Albert, and Hawoong Jeong. 1999. “Mean-Field Theory for Scale-Free Random Networks.” Physica A: Statistical Mechanics and Its Applications. https://doi.org/10.1016/S0378-4371(99)00291-5.
  • Bassett, Danielle Smith, and Ed Bullmore. 2006. “Small-World Brain Networks.” Neuroscientist 12: 512–23. https://doi.org/10.1177/1073858406293182.
  • Bechtel, William. 2020. “Hierarchy and Levels: Analysing Networks to Study Mechanisms in Molecular Biology.” Philosophical Transactions of the Royal Society B: Biological Sciences 375. https://doi.org/10.1098/rstb.2019.0320.
  • Blevins, A.A., and D.S. Bassett. 2020. Topology in Biology. B.Sriraman. Springer.
  • Brambilla, Manuele, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. 2013. “Swarm Robotics: A Review From The Swarm Engineering Perspective.” Swarm Intelligence 7: 1–41. https://doi.org/10.1007/s11721-012-0075-2.
  • Broido, Anna D, and Aaron Clauset. 2019. “Scale-Free Networks Are Rare.” Nature Communications 10 (1): 1–10. https://doi.org/10.1038/s41467-019-08746-5.
  • Buldyrev, Sergey V, Roni Parshani, Gerald Paul, H Eugene Stanley, and Shlomo Havlin. 2010. “Catastrophic Cascade of Failures in Interdependent Networks.” Nature 464 (April): 1025–28. https://doi.org/10.1038/nature08932.
  • Bullmore, Ed, and Olaf Sporns. 2009. “Complex Brain Networks: Graph Theoretical Analysis of Structural and Functional Systems.” Nature Reviews Neuroscience 10: 189. https://doi.org/10.1038/nrn2575.
  • Canning, James P., Emma E. Ingram, Sammantha Nowak-Wolff, Adriana M. Ortiz, Nesreen K. Ahmed, Ryan A. Rossi, Karl R. B. Schmitt, and Sucheta Soundarajan. 2017. “Network Classification and Categorization.” ArXiv abs/1709.0 (June): 1–37. http://arxiv.org/abs/1709.04481.
  • Chung, Fan, Linyuan Lu, T. Gregory Dewey, and David J. Galas. 2003. “Duplication Models for Biological Networks.” Journal of Computational Biology 10 (5): 677–87. https://doi.org/10.1089/106652703322539024.
  • Clauset, Aaron, Cosma Rohilla Shalizi, and M. E.J. Newman. 2009. “Power-Law Distributions in Empirical Data.” SIAM Review, no. 51.4: 661-703. Crossref. Web. https://doi.org/10.1137/070710111.
  • Erdӧs, Paul, and Alfréd Rėnyi. 1959. “On Random Graphs.” Publicationes Mathematicae 6: 290–97.
  • Hao, Dapeng, and Chuanxing Li. 2011. “The Dichotomy In Degree Correlation of Biological Networks.” PLoS ONE 6 (12): e28322. https://doi.org/10.1371/journal.pone.0028322.
  • He, Yong, Jinhui Wang, Liang Wang, Zhang J. Chen, Chaogan Yan, Hong Yang, Hehan Tang, et al. 2009. “Uncovering Intrinsic Modular Organization of Spontaneous Brain Activity in Humans.” PLoS ONE 4 (4): e5226. https://doi.org/10.1371/journal.pone.0005226.
  • Hilgetag, Claus C., and Alexandros Goulas. 2015. “Is The Brain Really A Small-World Network?” Brain Structure and Function 221. https://doi.org/10.1007/s00429-015-1035-6.
  • Huang, Chung Yuan, Chuen Tsai Sun, and Hsun Cheng Lin. 2005. “Influence of Local Information On Social Simulations In Small-World Network Models.” Journal of Artificial Societies and Social Similation 8 (4): 1–26.
  • Jeong, H., B. Tombor, R. Albert, Z. N. Oltval, and A. L. Barabási. 2000. “The Large-Scale Organization of Metabolic Networks.” Nature 407: 651. https://doi.org/10.1038/35036627.
  • Khaluf, Yara, Eliseo Ferrante, Pieter Simoens, and Cristián Huepe. 2017. “Scale Invariance In Natural and Artificial Collective Systems: A Review.” Journal of the Royal Society Interface. https://doi.org/10.1098/rsif.2017.0662.
  • Khanin, Raya, and Ernst Wit. 2006. “How Scale-Free Are Biological Networks.” Journal of Computational Biology 13 (3): 810–18. https://doi.org/10.1089/cmb.2006.13.810.
  • Kwon, Yung Keun, and Kwang Hyun Cho. 2007. “Analysis of Feedback Loops and Robustness in Network Evolution Based on Boolean Models.” BMC Bioinformatics 8 (430). https://doi.org/10.1186/1471-2105-8-430.
  • Milgram, Stanley. 1967. “The Small World Problem.” Psychology Today 1 (1): 61–67. https://doi.org/10.5860/choice.50-3418.
  • Mondragón, R J. 2020. “Estimating Degree – Degree Correlation and Network Cores From the Connectivity of High – Degree Nodes in Complex Networks.” Nature 10: 5668. https://doi.org/10.1038/s41598-020-62523-9.
  • Mones, Enys, and Lilla Vicsek. 2012. “Hierarchy Measure for Complex Networks ´.” PloS One 7 (3): 1–10. https://doi.org/10.1371/journal.pone.0033799.
  • Newman, M. E.J. 2005. “Power Laws, Pareto Distributions and Zipf’s Law.” Contemporary Physics 46 (5): 323–51. https://doi.org/10.1080/00107510500052444.
  • Newman, M. E.J., and M. Girvan. 2004. “Finding and Evaluating Community Structure in Nnetworks.” Physical Review E - 69 (026113). https://doi.org/10.1103/PhysRevE.69.026113.
  • Olesen, Jens M., Jordi Bascompte, Yoko L. Dupont, and Pedro Jordano. 2007. “The Modularity of Pollination Networks.” Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.0706375104.
  • Peng, Guan Sheng, Suo Yi Tan, Jun Wu, and Petter Holme. 2016. “Trade-Offs Between Robustness And Small-World Effect In Complex Networks.” Scientific Reports 6 (37317). https://doi.org/10.1038/srep37317.
  • Proulx, Stephen R., Daniel E.L. Promislow, and Patrick C. Phillips. 2005. “Network Thinking in Ecology and Evolution.” Trends in Ecology and Evolution 20 (6): 345–53. https://doi.org/10.1016/j.tree.2005.04.004.
  • Rajula, Hema Sekhar Reddy, Matteo Mauri, and Vassilios Fanos. 2018. “Scale-Free Networks in Metabolomics.” Bioinformation 14 (03): 140–44. https://doi.org/10.6026/97320630014140.
  • Reis, Saulo D S, Yanqing Hu, Andrés Babino, José S Andrade Jr, Santiago Canals, Mariano Sigman, and Hernán A Makse. 2014. “Avoiding Catastrophic Failure in Correlated Networks of Networks.” Nature Physics 10 (October): 762–67. https://doi.org/10.1038/NPHYS3081.
  • Shao, Mingyu, Yi Yang, Jihong Guan, and Shuigeng Zhou. 2013. “Choosing Appropriate Models For Protein-Protein Interaction Networks: A Comparison Study.” Briefings in Bioinformatics 15 (5): 823–38. https://doi.org/10.1093/bib/bbt014.
  • Silva, Eric De, and Michael P.H. Stumpf. 2005. “Complex Networks and Simple Models in Biology.” Journal of the Royal Society Interface 2: 419–30. https://doi.org/10.1098/rsif.2005.0067.
  • Sporns, Olaf. 2013. “Structure and Function of Complex Brain Networks.” Dialogues in Clinical Neuroscience 15 (3): 247–62.
  • Sreedharan, Jithin K., Krzysztof Turowski, and Wojciech Szpankowski. 2020. “Revisiting Parameter Estimation in Biological Networks: Influence of Symmetries.” In IEEE/ACM Transactions on Computational Biology and Bioinformatics. https://doi.org/10.1109/tcbb.2020.2980260.
  • Stam, Cornelis J. 2014. “Modern Network Science of Neurological Disorders.” Nature Reviews Neuroscience 15: 683–95. https://doi.org/10.1038/nrn3801.
  • Stumpf, Michael P.H., Carsten Wiuf, and Robert M. May. 2005. “Subnets of Scale-Free Networks Are Not Scale-Free: Sampling Properties of Networks.” Proceedings of the National Academy of Sciences of the United States of America 102 (12): 4221–24. https://doi.org/10.1073/pnas.0501179102.
  • Tanaka, Reiko. 2005. “Scale-Rich Metabolic Networks.” Physical Review Letters 94 (16): 168101. https://doi.org/10.1103/PhysRevLett.94.168101.
  • Tanaka, Reiko, Tau Mu Yi, and John Doyle. 2005. “Some Protein Interaction Data Do Not Exhibit Power Law Statistics.” FEBS Letters 579 (23): 5140–44. https://doi.org/10.1016/j.febslet.2005.08.024.
  • Voitalov, Ivan, Pim van der Hoorn, Remco van der Hofstad, and Dmitri Krioukov. 2019. “Scale-Free Networks Well Done.” Physical Review Research. https://doi.org/10.1103/physrevresearch.1.033034.
  • Watts, Duncan J., and Steven H. Strogatz. 1998. “Collective Dynamics of ‘Small-World’ Networks.” Nature 393: 440–42. https://doi.org/10.1515/9781400841356.301.
  • Watts, Duncan J., and Jie Wu. 2002. “Small Worlds: The Dynamics of Networks Between Order and Randomness.” SIGMOD Record. https://doi.org/10.1145/637411.637426.
  • Xin, R., J. Zhang, and Y. Shao. 2020. “Complex Network Classification with Convolutional Neural Network.” Tsinghua Science and Technology 25 (4): 447–57. https://doi.org/10.26599/TST.2019.9010055.
  • Zamora-lópez, Gorka, and Romain Brasselet. 2019. “Sizing Complex Networks.” Communications Physics 2 (144). https://doi.org/10.1038/s42005-019-0239-0.
  • Zhu, Xiaowei, Mark Gerstein, and Michael Snyder. 2007. “Getting Connected : Analysis and Principles of Biological Networks.” Genes & Development 21: 1010–24. https://doi.org/10.1101/gad.1528707.Transcription.