Östrojen- bağımlı Meme Kanseri ve Sodyum-bağımlı Steroid Sülfat Taşıyıcısı SOAT

ÖZET: Meme kanseri kadınlarda en sık gözlenen kanser türüdür ve %95’i hormon bağımlı olarak gelişir. Postmenopozal dönemde aktif östrojen plazma seviyesi biyolojik etki konsantrasyonunun altında olmasına rağmen, östrojen-bağımlı meme kanserinin üçte ikisi bu dönemde ortaya çıkmaktadır. Buna karşın plazmada mikromolar düzeyde inaktif östrojen olan Steroid-sülfatlar bulunmaktadir. Özellikle postmenoposal kadında steroid sülfatlardan intratümöral hormonal aktif östrojen üretimi meme kanseri hücrelerinin proliferasyonunda önemli rol oynar. Ancak steroid sülfatlar hidrofilik yapılarından dolayı intraselüler taşınmada bir membran taşıyıcısına ihtiyaç duymaktadır. Bugüne kadar steroid sülfatların meme dokusu tümör hücrelerindeki taşınma mekanizması geniş kapsamlı olarak açıklığa kavuşturulamamıştır. Bu derlemede SLC ailesinin yeni bir üyesi olan “sodyuma-bağımlı organik anyon taşıyıcısı” nın (Sodium dependent Organic Anion Transporter- SOAT) postrmenopozal dönemde görülen östrojen-bağımlı meme kanserindeki rolü vurgulanacaktır.
Anahtar Kelimeler:

Meme kanseri, SOAT, Steroid sülfat

___

  • Almog N., Li R., Peled A., Schwartz D., Wolkowicz R., Goldfinger N., Pei H., Rotter V., 1997. The murine C'-terminally alternatively spliced form of p53 induces attenuated apoptosis in myeloid cells. Mol. Cell Biol. 17, 713-722.
  • Anonim, http://www.bioparadigms.org/slc/menu.asp *Erişim: 06.04.2009+
  • Baulieu EE., 1996. Dehydroepiandrosterone (DHEA): a fountain of youth? J. Clin. Endocrinol. Metab., 81, 3147-3151.
  • Carlstrom K., 1984. Influence of intratumoral estradiol biosynthesis on estrogen receptors. Recent Results Cancer Res., 91, 145-149.
  • Chen NH., Reith ME., Quick MW., 2004. Synaptic uptake and beyond: the sodium- and chloride- dependent neurotransmitter transporter family SLC6. Pflugers Arch., 447, 519-531.
  • Chetrite GS., Cortes-Prieto J., Philippe JC., Wright F., Pasqualini JR., 2000. Comparison of estrogen concentrations, estrone sulfatase and aromatase activities in normal, and in cancerous, human breast tissues. J. Steroid Biochem. Mol. Biol., 72, 23-27.
  • Cuzick J. and Wang OY., 1986. The Prévention of breast cancer. The Lancet, 1:83-86.
  • Duffy MJ., 2005. Predictive markers in breast and other cancers: a review. Clin. Chem., 51, 494- 503.
  • el Deiry WS. 1998. Regulation of p53 downstream genes. Semin. Cancer Biol., 8, 345-357.
  • Fernandes CF., Godoy JR., Doring B., Cavalcanti MC., Bergmann M., Petzinger E., Geyer J., 2007. The novel putative bile acid transporter SLC10A5 is highly expressed in liver and kidney. Biochem. Biophys. Res. Commun. 361, 26-32.
  • Geisler J., 2003. Breast cancer tissue estrogens and their manipulation with aromatase inhibitors and inactivators. J. Steroid Biochem. Mol. Biol., 86, 245-253.
  • Geyer J., Godoy JR., Petzinger E. 2004. Identification of transporter from rat adrenal gland. Biochem. Biophys. Res. Commun., 316 , 300-306. anion
  • Geyer J., Wilke T., Petzinger E., 2006. The solute carrier family SLC10: more than a family of bile acid transporters regarding function and phylogenetic Schmiedebergs Arch. Pharmacol., 372, 413-431. Naunyn
  • Geyer J., Doring B., Meerkamp K., Ugele B., Bakhiya N., Fernandes CF., Godoy JR., Glatt H., Petzinger E., 2007. Cloning and functional characterization of human sodium-dependent organic anion transporter (SLC10A6). J. Biol. Chem., 282, 19728-19741.
  • Geyer J., Fernandes CF., Doring B., Burger S., Godoy JR., Rafalzik S., Hubschle T., Gerstberger R., Petzinger E., 2008. Cloning and molecular characterization of the orphan carrier protein Slc10a4: expression in cholinergic neurons of the rat central nervous system. Neuroscience, 152, 990-1005.
  • Giersiepen K., Heitmann C., Janhsen K., Lange C., 2005. Gesundheitsberichterstattung des Bundes, Heft 25, Brustkrebs Robert Koch Institut. (http://www.rki.de/cln_169/nn_199850/DE/Con tent/GBE/Gesundheitsberichterstattung/GBEDo wnloadsT/brustkrebs,templateId=raw,property= publicationFile.pdf/brustkrebs.pdf)
  • Godoy JR., Fernandes C., Doring B., Beuerlein K., Petzinger E., Geyer J., 2007. Molecular and phylogenetic characterization of a novel putative membrane transporter (SLC10A7), conserved in vertebrates and bacteria. Eur. J. Cell Biol., 86, 445-460.
  • Graeber TG., Osmanian C., Jacks T., Housman DE., Koch CJ., Lowe SW., and Giaccia AJ., 1996. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature, 379, 88-91.
  • Hediger MA., Romero MF., Peng JB., Rolfs A., Takanaga H., and Bruford E A., 2004. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction. Pflugers Arch., 447, 465-468.
  • Henderson BE., Ross R., and Bernstein L., 1988. Estrogens as a cause of human cancer: the Richard and Hinda Rosenthal Foundation award lecture. Cancer Res., 48, 246-253.
  • Hollstein M., Sidransky D., Vogelstein B., and Harris CC., 1991. p53 mutations in human cancers. Science 253, 49-53.
  • Jemal A., Siegel R., Ward E., Hao Y., Xu J., Murray T., and Thun MJ., 2008. Cancer statistics. CA Cancer J. Clin., 58, 71-96.
  • Karakus E., 2009. Die Bedeutung des Transporters SOAT (SLC10A6) für die Entwicklung von Estrogen-abhängigen Doktora Tezi, Farmakoloji ve Toksikoloji Enstitüsü, Giessen. Mammakarzinomen,
  • Kosova F. ve Arı Z., 2008. Fırat Üniversitesi Sağlık Bilimleri Tıp Dergisi, 22 (6): 377 - 384.
  • Kramer W., Wess G., Schubert G., Bickel M., Girbig F., Gutjahr U., Kowalewski S., Baringhaus K. H., Enhsen A., Glombik H., 1992. Liver-specific drug targeting by coupling to bile acids. J. Biol. Chem., 267, 18598-18604.
  • Kramer W. and Wess G., 1996. Bile acid transport systems as pharmaceutical targets. Eur. J. Clin. Invest., 26, 715-732.
  • Krishnan V., Heath H., and Bryant HU., 2000. Mechanism of action of estrogens and selective estrogen receptor modulators. Vitam. Horm., 60, 123-147.
  • Labrie F., 1991. Intracrinology. Mol. Cell Endocrinol., 78, C113-C118.
  • Labrie F., Belanger A., Luu-The V., Labrie C., Simard J., Cusan L., Gomez JL., and Candas B., 1998. DHEA and the intracrine formation of androgens and estrogens in peripheral target tissues: its role during aging. Steroids, 63, 322-328.
  • Le Bail JC., Marre-Fournier F., Nicolas JC., and Habrioux G., 1998. C19 steroids estrogenic activity in human breast cancer cell lines: importance of dehydroepiandrosterone sulfate at physiological plasma concentration. Steroids, 63, 678-683.
  • Levine AJ., 1997. p53, the cellular gatekeeper for growth and division. Cell, 88, 323-331.
  • Lowe SW. and Ruley HE., 1993. Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev., 7, 535-545.
  • Meerkamp K., Zaichuk T., Ugele B., Petzinger E. and Geyer J., 2008. Expression of steroid sulfatase (STS) and sodium-dependent organic anion transporter (SOAT) in breast cancer. Nauny- Schmiedeberg`s Archives of Pharmacology., 388, (1), 11.
  • Meites J. 1972, Relation of Prolactin and Estrogene to mammary tumorogenesis in the rat. J. Nat. Cancer Inst. 48,1217-24.
  • Miyoshi Y., Ando A., Shiba E., Taguchi T., Tamaki Y., and Noguchi S., 2001. Involvement of up- regulation of
  • beta-hydroxysteroid dehydrogenase type 1 in maintenance of intratumoral postmenopausal breast cancers. Int. J. Cancer, 94, 685-689. levels in
  • Morris KT., Toth-Fejel S., Schmidt J., Fletcher WS., Pommier androsterone sulfate predicts breast cancer progression during new aromatase inhibitor therapy and stimulates breast cancer cell growth in tissue culture: a renewed role for adrenalectomy. Surgery, 130, 947-953.
  • Nelson WG. and Kastan MB., 1994. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol. Cell Biol., 14, 1815-1823.
  • Nussbaumer P. and Billich A., 2005. Steroid sulfatase inhibitors: their potential in the therapy of breast cancer. Curr. Med. Chem. Anticancer Agents, 5, 507-528.
  • Osborne CK., 1998. Tamoxifen in the treatment of breast cancer. N. Engl. J. Med., 339, 1609-1618.
  • Pasqualini JR., Maloche C., Maroni M., and Chetrite G., Promegestone (R-5020) on mRNA of the oestrone sulphatase in the MCF-7 human mammary cancer cells. Anticancer Res., 14, 1589-1593. the progestagen
  • Pasqualini JR., Chetrite G., Blacker C., Feinstein MC., Delalonde L., Talbi M., and Maloche C., 1996. Concentrations of estrone, estradiol, and estrone sulfate and evaluation of sulfatase and aromatase activities in pre- and postmenopausal breast cancer patients. J. Clin. Endocrinol. Metab., 81, 1460-1464.
  • Pasqualini JR., Cortes-Prieto J., Chetrite G., Talbi M., and Ruiz A., 1997. Concentrations of estrone, estradiol and their sulfates, and evaluation of sulfatase and aromatase activities in patients with breast fibroadenoma. Int. J. Cancer., 70, 639-643.
  • Pasqualini JR. 2004. The selective estrogen enzyme modulators in breast cancer: a review. Biochim. Biophys. Acta., 1654, 123-143.
  • Petzinger E., Nickau L., Horz JA., Schulz S., Wess G., Enhsen A., Falk E., Baringhaus KH., Glombik H., Hoffmann A., and., 1995. Hepatobiliary transport of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors conjugated with bile acids. Hepatology, 22, 1801-1811.
  • Platia MP., Fencl MD., Elkind-Hirsch KE., Canick JA., and Tulchinsky D., 1984. Estrone sulfatase activity in the human brain and estrone sulfate levels in the normal menstrual cycle. J. Steroid Biochem., 21, 237-241.
  • Remy-Martin A., Prost O., Nicollier M., Burnod J., and Adessi GL., 1983. Estrone sulfate concentrations in plasma of normal individuals, postmenopausal women with breast cancer, and men with cirrhosis. Clin. Chem., 29, 86-89.
  • Roemer K., 1999. Mutant p53: gain-of-function oncoproteins and wild-type p53 inactivators. Biol. Chem., 380, 879-887.
  • Root C., Smith CD., Winegar DA., Brieaddy LE. , and Lewis MC., 1995. Inhibition of ileal sodium- dependent bile acid transport by 2164U90. J. Lipid Res., 36, 1106-1115.
  • Ruder HJ., Loriaux L., and Lipsett MB., 1972. Estrone sulfate: production rate and metabolism in man. J. Clin. Invest., 51, 1020-1033.
  • Saier MH Jr., 2000. A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol. Mol. Biol. Rev., 64, 354- 411.
  • Santen R., Cavalieri E., Rogan E., Russo J., Guttenplan J., Ingle J., and Yue W., 2009. Estrogen mediation of breast tumor formation involves estrogen receptor-dependent, as well as independent, genotoxic effects. Ann. N. Y. Acad. Sci., 1155 , 132-140.
  • Santen RJ., Boyd NF., Chlebowski RT., Cummings S. , Cuzick J., Dowsett M., Easton D., Forbes JF., Key T., Hankinson S. E., Howell A. , and Ingle J., 2007. Critical assessment of new risk factors for breast cancer: considerations for development of an improved risk prediction model. Endocr. Relat Cancer, 14, 169-187.
  • Santner SJ., Feil PD., and Santen RJ., 1984. In situ estrogen production via the estrone sulfatase pathway in breast tumors: relative importance versus the aromatase pathway. J. Clin. Endocrinol. Metab, 59, 29-33.
  • Sasano H., Frost A. R., Saitoh R., Harada N., Poutanen M., Vihko R., Bulun SE., Silverberg SG., and Nagura H., 1996. Aromatase and 17 beta- hydroxysteroid dehydrogenase type 1 in human breast carcinoma. J. Clin. Endocrinol. Metab., 81, 4042-4046.
  • Sasano H., Suzuki T., Nakata T., and Moriya T., 2006. New development in intracrinology of breast carcinoma. Breast Cancer., 13, 129-136.
  • Satoh H., Yamashita F., Tsujimoto M., Murakami H., Koyabu N., Ohtani H., and Sawada Y., 2005. Citrus juices inhibit the function of human organic anion-transporting polypeptide OATP-B. Drug Metab. Dispos., 33, 518-523.
  • Suzuki T., Moriya T., Ishida T., Ohuchi N., and Sasano H., 2003. Intracrine mechanism of estrogen synthesis Pharmacother. 57, 460-462. cancer. Biomed.
  • Suzuki T., Miki Y., Nakamura Y., Moriya T., Ito K., Ohuchi N., and Sasano H., 2005. Sex steroid- producing enzymes in human breast cancer. Endocr. Relat Cancer, 12, 701-720.
  • Tanaka H., Arakawa H., Yamaguchi T., Shiraishi K., Fukuda S., Matsui K., Takei Y., and Nakamura Y., 2000. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature, 404, 42-49.
  • Vogelstein B., Lane D., and Levine AJ., 2000. Surfing the p53 network. Nature, 408, 307-310.
  • Vousden KH., 2002. Activation of the p53 tumor suppressor protein. Biochim. Biophys. Acta, 1602, 47-59.
  • Woo LW., Purohit A., Reed MJ., and Potter BV., 1996. Active site directed inhibition of estrone sulfatase by nonsteroidal coumarin sulfamates. J. Med. Chem., 39, 1349-1351.
  • Zhu K., Wang J., Zhu J., Jiang J., Shou J., and Chen X., 1999. p53 induces TAP1 and enhances the transport of MHC class I peptides. Oncogene, 18, 7740-7747.