Osteoarthritis Teşhisinde Manyetik Rezonans Görüntüleme

Kedi ve köpeklerde osteoarthritis (OA) sık rastlanan bir problemdir. Kongenital olabildiği gibi, yaygın olarak kalça displazisi, osteochondritis dissecans (OCD), ununited anconeal process, fragmented coronoid process (FPC), ligamentum cruciatum anterior (LCA) rupturu, menisküs hastalıkları ve patella luksasyonu gibi hastalıklar sonucunda da şekillenebilir. Geleneksel olarak OA tanı ve değerlendirilmesi, klinik bulgular, fiziksel muayene ve radyografi ile yapılsa da radyografi erken kıkırdak doku hasarını göstermez. Osteoarthritisin erken tanısı, tedavinin başarısını sağlamak açısından çok önemlidir. Bu nedenle, manyetik rezonans görüntüleme (MRG) ile OA’e bağlı şekillenen kıkırdak dejenerasyonunu henüz mikroskopik düzeydeyken saptamak mümkün olduğundan, MRG önemli bir tanı yöntemi haline gelmektedir. İnsan hekimleri tarafından yaygın olarak kullanılan MRG, son yıllarda özellikle küçük hayvan pratiğine de dahil olmaya başlamıştır. Bu derlemede, MRG’nin OA tanısında kullanımına ait literatür verilerin derlenerek meslektaşlarımızla paylaşılması amaçlanmıştır. 

-

Osteoarthritis (OA) is a common orthopaedic problem in cats and dogs. As it can be congenital, the OA commonly results from hip dysplasia, osteochondritis dissecans (OCD), ununited anconeal process, fragmented coronoid process (FPC), ruptured ligamentum cruciatum anterior (LCA), meniscal disorders and patellar luxation. Although the diagnosis and assessment of OA can be performed based on the clinical signs, physical examination and radiography, but the radiography could not show the early cartilage damages. Early diagnosis of the OA is very important to ensure the success of treatment. So, the magnetic resonance imaging (MRI) becomes an important diagnostic imaging technique, because it is possible to detect the cartilage degeneration due to the OA at microscopic level. The MRI techniques used widely by medical physicians have recently been getting involved in small animals practice as well. In this review, it is intended to summarize the literature on the MRI usage for diagnosis of the OA and to share the data with our colleagues.

___

  • Akhtar S., Poh CL., Kitney RI., 2007. An MRI derived articular cartilage visualization framework. Osteoarthritis and Cartilage, 15, 1070–1085.
  • Alkan Z., 1999. Veteriner Radyoloji. 106-120, Mina Ajans, Ankara.
  • Baird DK., Hathcock JT., Kincaid SA., Rumph PF., Kammermann J., Widmer WR., Visco D., Sweet D., 1998. Low-field magnetic resonance imaging of early subchondral cyst-like lesions in induced cranial cruciate ligament deficient dogs. Veterinary Radiology & Ultrasound, 39, 167-173.
  • Berry CR., 2002. Physical principles of computed tomography and magnetic resonance imaging. In “Textbook of Veterinary Diagnostic Radiology”, Ed., DE Thrall, 4th ed., 28-34, W.B. Saunders Company, Philadelpia.
  • Boesen M., Jensen KE., Qvistgaard E., DanneskioldSamsoe B., Thomsen C., Ostergaard M., Bliddal H., 200 Delayed gadolinium-enhanced magnetic resonance imaging (dGEMRIC) of hip joint cartilage: better cartilage delineation after intra-articular than intravenous gadolinium injection. Acta Radiologica, 47, 391–396. Boileau C., Martel-Pelletier J., Abram F., Raynauld JP., Troncy E., D’Anjou MA., Moreau M., Pelletier JP., 200 MRI can accurately assess the long-term progression of knee structural changes in experimental dog osteoarthritis. Annals of the Rheumatic Diseases, 67, 926–932. Borthakur A., Shapiro EM., Beers J., Kudchodkar S., Kneeland JB., Reddy R., 2000. Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. Osteoarthritis and Cartilage, 8, 288–293.
  • Burstein D., Gray ML., Hartman AL., Gipe R., Foy BD., 19 Diffusion of small solutes in cartilage as measured by nuclear magnetic resonance (NMR) spectroscopy and imaging. Journal of Orthopaedic Research, 11, 465–478. D’anjou MA., Moreau M., Troncy E., Martel-Pelletier J., Abram F., Raynauld JP., Pelletier JP., 2008. Osteophytosis, subchondral bone sclerosis, joint effusion and soft tissue thickening in canine experimental stifle osteoarthritis: comparison between 1.5T MRI and computed radiography. Veterinary Surgery, 37, 166–177.
  • Disler DG., 1997. Fat-suppressed three-dimensional spoiled gradient-recalled MR imaging: assessment of articular and physeal hyaline cartilage. American Journal of Roentgenology, 169, 1117–1123.
  • Disler DG., Recht MP., McCauley TR., 2000. MR imaging of articular cartilage. Skeletal Radiology Journal, 29, 367–377.
  • Duerk JL., Lewin JS., Wendt M., Petersilge C., 1998. Remember true FISP? A high SNR, near 1-second imaging method for T2-like contrast in interventional MRI at 2 T. Journal of Magnetic Resonance Imaging, 8, 203–208.
  • Galindo-Zamora V., Dziallas P., Ludwig DC., Nolte I., Wefstaedt P., 2013. Diagnostic accuracy of a short-duration 3 Tesla MR protocol for diagnosing stifle joint lesions in dogs with nontraumatic cranial cruciate ligament rupture. BMC Veterinary Research, 9, 40.
  • Gold GE., Burstein D., Dardzinski B., Lang P., Boada F., Mosher T., 2006. MRI of articular cartilage in OA: novel pulse sequences and compositional/functional markers. Osteoarthritis and Cartilage, 14, A76–A86.
  • Güzel N., Yavru N., 1997. Veteriner genel radyoloji, Selçuk Üniversitesi, Veteriner Fakültesi yayınları, Konya.
  • Hargreaves BA., Gold GE., Beaulieu CF., Vasanawala SS., Nishimura DG., Pauly JM., 2003. Comparison of new sequences for high-resolution cartilage imaging. Magn. Reson. Med., 49, 700–709.
  • Hargreaves BA., Gold GE., Lang PK., Conolly SM., Pauly JM., Bergman G., 1999. MR imaging of articular cartilage using driven equilibrium. Magnetic Resonance in Medicine, 42, 695–703.
  • Harper TAM., Jones JC., Saunders GK., Daniel GB., Leroith T., Rossmeissl E., 2011. Sensitivity of lowfield T2 images for detecting the presence and severity of histopathologic meniscal lesions in dogs.Veterinary Radiology & Ultrasound, 52, 428–435.
  • Hegemann N., Kohn B., Brunberg L., Schmidt MF., 200 Biomarkers of joint tissue metabolism in canine osteoarthritic and arthritic joint disorders. Osteoarthritis and Cartilage, 10, 714–721. Karaarslan Y., 1996. Osteoartrit. In “Klinik Romatoloji”, Ed., Y Kararslan, 198-209, Hekimler Yayın Birliği, Ankara.
  • Kwack K., Cho J., Kim M., Yoon C., Yoon Y., Choi J., Kwon J., Min B., Sun J., Kim S., 2008. Comparison study of intraarticular and intravenous gadolinium-enhanced magnetic resonance imaging of cartilage in a canine model. Acta Radiology, 49, 65–74.
  • Lahm A., Uhl M., Edlich M., Erggelet C., Haberstroh J., Kreuz PC.,2005. An experimental canine model for subchondral lesions of the knee joint. The Knee, 12, 51–55.
  • Libicher M., Ivancic M., Hoffmann V., Wenz W., 2005. Early changes in experimental osteoarthritis using the Pond-Nuki dog model:technical procedure and initial results of in vivo MR imaging. European Radiology, 15, 390–394.
  • Martinez SA., 1997. Congenital conditions that lead to osteoarthritis in the dog. Veterinary Clinics of
  • North America-Small Animal Practice, 27, 735– 7 Moscowitz RW., 1993. Clinical and laboratory findings in osteoarthritis. In “Arthritis and Allied Conditions, A Textbook of Rheumatology”, Eds., DJ Mc Carty, WJ Koopman, 12th ed., 1735-1760, Lea & Febiger, Philadelphia.
  • Pepin SR., Griffith CJ., Wijdicks CA., Goerke U., McNulty MA., Parker JB., Carlson CS., Ellermann J., LaPrade RF., 2009. A comparative analysis of 0-Tesla MRI and histology measurements of knee articular cartilage in a canine posterolateral knee injury model. American Journal of Sports Medicine, 37, 119–124.
  • Peterfy CG., 2000. Scratching the surface, articular cartilage disorders in the knee. Magnetic Resonance Imaging Clinics of North America, 8, 409–430.
  • Potter HG., Linlater JM., Allen AA., Hannafin JA., Haa SB., 1998. MR imaging of articular cartilage of the knee: a prospective evaluation using fast spinecho imaging. The Journal of Bone and Joint Surgery American Volume, 80, 1276–1284.
  • Shapiro EM., Borthakur A., Dandora R., Kriss A., Leigh JS., Reddy R., 2000. Sodium visibility and quantitation in intact bovine articular cartilage using high field (23)Na MRI and MRS. Journal of Magnetic Resonance Imaging, 142, 24–31.
  • Sonin AH., Pensy RA., Mulligan ME., Hatem S., 2002. Grading articular cartilage of the knee using fast spin-echo proton densityweighted MR imaging without fat suppression. American Journal of Roentgenology, 179, 1159–1166.
  • Vasanawala SS., Pauly JM., Nishimura DG., 1999. Fluctuating equilibrium MRI. Magnetic Resonance in Medicine, 42, 876–883. Verstraete KL., Almqvist F., Verdonk P., Vanderschueren G., Huysse W., Verdonk R., Verbrugge G., 2004. MRI of cartilage and cartilage repair. Clinical Radiology, 59, 674–689.
  • Williams A., Sharma L., McKenzie CA., Prasad PV., Burstein D., 2005. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage in knee osteoarthritis. Arthritis and Rheumatism, 52, 3528–3535.
  • Wucherer KL., Ober CP., Conzemius MG., 2012. The use of delayed gadolinium enhanced MRI of cartilage and T2 mapping to evaluate articular cartilage in the normal canine elbow. Veterinary Radiology &Ultrasound, 53, 57–63