Doğadaki Çoruh alabalığı (Salmo coruhensis), Anadolu alabalığı (Salmo rizeensis) ve Gökkuşağı alabalığı (Oncorynchus mykiss) Spermatozoasının Oksidan ve Antioksidan Durumunun Karşılaştırılması

Bu çalışmada, doğadaki Çoruh alabalığı (Salmo coruhensis), Anadolu alabalığı (Salmo rizeensis) ve gökkuşağı alabalığı (Oncorynchus mykiss) spermatozoanın oksidan ve antioksidan durumu üzerindeki etkilerinin belirlenmesi amaçlanmıştır. Balıklar Uzungöl’den elde edilmiştir. Üç alabalık türünün spermatozasında enzimatik antioksidan aktiviteleri (süperoksit dismutaz, katalaz, glutatyon peroksidaz), glutatyon ve lipid peroksidasyonu (malondialdehit) belirlenmiştir. Sonuçlar katalaz (23.36±0.36 K/g.protein), glutatyon (0.57±1.24 μmol/g.hücre), glutatyon peroksidaz (74.00±1.5 U/g.protein) ve malondialdehit seviyelerinin (6.55±2.01 nmol/g hücre) Anadolu alabalığının (S. rizeensis) spermatozoasında daha yüksek olduğunu göstermiştir. Sonuç olarak, türler arasındaki farklılıklar antioksidan ve malondialdehit seviyelerinde değişikliklere neden olmuştur.

Comparison of Oxidant and Antioxidant Status of Çoruh trout (Salmo coruhensis), Anatolian trout (Salmo rizeensis) and Rainbow trout (Oncorynchus mykiss) Spermatozoa

The aim of present study was to compare oxidant and antioxidant status of Çoruh trout (Salmo coruhensis), Anatolian trout (Salmo rizeensis) and rainbow trout (Oncorynchus mykiss) spermatozoa. Fish were obtained from Uzungöl. Enzymatic antioxidant activities (superoxide dismutase, catalase, glutathione peroxidase), glutathione and lipid peroxidation (malondialdehyde) were determined in spermatozoa of three trout species. Results indicated that catalase (23.36±0.36 K/g.protein), glutathione peroxidase (74.00±1.5 U/g.protein), glutathione (0.57±1.24 μmol/g.cell) and malondialdehyde levels (6.55±2.01 nmol/g cell) were highest levels in Anatolian trout (S. rizeensis) spermatozoa. In conclusion, differences among species caused alterations in the antioxidant and malondialdehyde levels.

___

  • 1. Lahnsteiner F., Mansour N., Kunz F.A., 2011. The effect of antioxidants on the quality of cryopreserved semen in two salmonid fish, the brook trout (Salvelinus fontinalis) and the rainbow trout (Oncorhynchus mykiss). Theriogenology 76, 882–890.
  • 2. An R., Li Y., Niu X., Yu H., 2008. Responses of Antioxidant Enzymes in Catfish Exposed to Liquid Crystals from E-Waste. International Journal of Environmental Research and Public Health, 5 (2), 99-103.
  • 3. Kocabas M., Kayim M., Can E., Ateş M., Kutluyer F., Aksu, Ö., 2011. Spotting pattern features in the brown trout (Salmo trutta macrostigma, T., 1954) population. Scientific Research Essays, 6, 5021-5024.
  • 4. Kottelat M.,Freyhof J., 2007.Handbook of European freshwater fishes.Kottelat, Cornol, Switzerland and Freyhof, Berlin, Germany, 646 pp.
  • 5. Kuru M., 2004.The last systematic status of inland fish in Turkey.Gazi UniversityJournal Faculty Education,24, 1-21.
  • 6. Turan D., Kottelat M., Engin S., 2009. Two new species of trouts, resident and migratory, sympatric in streams of northern Anatolia (Salmoniformes: Salmonidae). Ichthyological Explorationof FreshwaterJournal, 20, 333-364.
  • 7. Seyhaneyildiz Can S., Kutluyer F., Can E., Kayiş Ş., DelihasanSonay F., Köse Ö., 2014. Effect of dietary kefir on the digestive and liver enzymes activities, and glucose level of Coruh trout, Salmocoruhensis (Actinopterygii: Salmoniformes: Salmonidae). ActaIchthyologicaEtPiscatoria, 44, 167–170.
  • 8. Can E., Kutluyer F., DelihasanSonay F., Köse Ö.,2012. The use of kefir as potential probiotic in Çoruh trout (Salmocoruhensis): Effects on growth performance and immunoglobulin (IgM) levels. African Journal of Biotechnology, 11, 7775-7780.
  • 9. Kocabaş M.,Bascinar N., 2013. The effect of salinity on spotting features of Salmotruttaabanticus, Salmotruttafario and Salmotruttalabrax of cultured. Iranian Journal of Fisheries Science, 12, 723-732.
  • 10. Placer Z.A., Cusman L.L., Johnson B.C., 1966. Estimation of product of lipid peroxidation (malondialdehyde) in biochemical systems. Analytic Biochemistry, 16 (2), 359-364.
  • 11. Sun Y., Oberley W.L., Lİ Y., 1988.A simple method for clinical assay of superoxide dismutase. Clinical Chemestry, 34, 497-500.
  • 12. Aebi H., 1984.Catalase in vitro. Methods in Enzymology, 105, 121-126.
  • 13. Matkovics B., Szabo I.,Varga, I.S., 1988.Determination of enzyme activities in lipid peroxidation and glutathione pathways.LaboratoriumiDiagnosztika, 15, 248–249 (in Hungarian).
  • 14. Chavan S., Sava L., Saxena V., Pillai S., Sontakke A., Ingole D., 2005. Reduced Glutathione: Importance of specimen collection. International Journal of Clinical Biochemistry, 20(1), 150-152.
  • 15. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurements with the folin phenol reagent. J Biol Chem 1951; 193: 265-275.
  • 16. Vinagrea C., Madeiraa D., Narcisob L., Cabrala H.N., Diniz M., 2012. Effect of temperature on oxidative stress in fish: Lipid peroxidation and catalase activity in the muscle of juvenile seabass, Dicentrarchuslabrax. Ecological Indicators, 23, 274–279.
  • 17. Gleyzer S.I., 1983. Possibility of color adaptation of fish vision. Journal of Ichthyology 23, 62-164.
  • 18. Rotllant J., Tort L., Montero D., Pavlidis M., Martinez M., Bonga S.E.W., Balm P.H.M., 2003. Background colour influence on the stress response in cultured red porgy Pagrus pagrus. Aquaculture, 223 (1-4), 129-139.
  • 19. Barcellos L.J.G., Kreutz L.C., Quevedo R.M., da Rosa J.G.S., Koakoski G., Centenaro L., Pottker E., 2009. Influence of color background and shelter availability on jundia (Rhamdia quelen) stress response. Aquaculture, 288 (1-2), 51-56.
  • 20. Ebrahimi G., 2011. Effects of Rearing Tank Background Color on Growth Performance in Juvenile Common Carp, Cyprinus carpio L. Agricultural Journal, 6 (5), 213-217.
  • 21. Shaliutina-Kolešová A., Gazo I., Cosson J., Linhart O., 2013. Comparison of oxidant and antioxidant status of seminal plasma and spermatozoa of several fish species.Czech Journal of Animal Science, 58 (7), 313–320.
  • 22. Saliu J.K., Bawa-Allah K.A., 2012. Toxicological Effects of Lead and Zinc on the Antioxidant Enzyme Activities of Post Juvenile Clarias gariepinus. Resources and Environment, 2(1), 21-26.
  • 23. Vander Oost R., Beyer J., Vermeulen N.P.E., 2003. Fish bioaccumulation and biomarkers in Environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 13(2), 57-149.
  • 24. Trenzado C., Hidalgo M.C., García-Gallego M., Morales A.E., Furné M., Domezain A., Domezain J., Sanz A., 2006. Antioxidant enzymes and lipid peroxidation in sturgeon Acipenser naccarii and trout Oncorhynchus mykiss.A comparative study. Aquaculture, 254 (1-4), 758-767.
  • 25. Gad N.S., 2011. Oxidative stress and antioxidant enzymes in Oreochromis niloticus as biomarkers of exposure to crude oil pollution. Internatıonal Journal of Environmental Science and Engineering, 1, 49-58.
  • 26. Olakolu F.C., Hassan A.A., Renner K.O., 2012. Lipid peroxidation and antioxidant biomarker activities as indicator of pollution in blue crab Callinectes amnicola from Lagos lagoon. British Journal of Science 5 (2), 47-56.
  • 27. URL-1, 2017. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T19861A9050312.en. 20 Mayıs 2017.
  • 28. Alp A., Kara C., Buyukcapar H.M., 2005. Age, growth and diet composition of the resident brown trout, Salmo trutta macrostigma Duméril, 1858 in firniz stream of the River Ceyhan, Turkey. Turkish Journal of Veterinary and Animal 29, 285-295.