Investigation of Possible Heavy Metals and Antibiotic Residues in Commercial Collagen

Investigation of Possible Heavy Metals and Antibiotic Residues in Commercial Collagen

The current study investigated whether commercial collagens were within physiologically acceptable limits to ensure their safer use. For this purpose, 10 of the 25 most popular collagen from fish and farm animals (FA) sold on the internet were randomly selected and purchased from a pharmacy. The zinc, lead, cadmium, mercury, and arsenic levels in these commercial products were then analyzed by ICP-OES. Streptomycin, sulfonamide, tetracycline, and chloramphenicol levels in the samples were determined by HPLC. No lead, mercury or arsenic residues were found in any of the tested samples. The mean cadmium levels in fish and FA collagen samples were not significant between the groups (P=0.2548). The lowest cadmium level in fish collagen samples was 0.152 mg/kg and the highest cadmium level was 0.288 mg/kg. Cadmium levels detected in FA collagen samples ranged from 0.183 mg/kg to 2.78 mg/kg. The mean zinc levels in fish and FA collagen were not significant (P=0.2644). The lowest zinc level in fish collagen was 1.368 mg/kg and the highest was 2673 mg/kg. The lowest and highest zinc levels in FA collagen were 1,750 mg/kg and 1528 mg/kg, respectively. According to the current results, no streptomycin, sulfonamide, and tetracycline residues were found in any of the collagen samples evaluated. Chloramphenicol was only in two fish collagen samples, but these values were below the lower detection limits. The results indicated that the risk of heavy metal and antibiotic residues in commercial collagen sold in our country is low.

___

  • 1. Bouchard, M. F., Bellinger, D. C., Weuve, J., Matthews-Bellinger, J., Gilman S. E., Wright, R. O., Schwartz, J., & Weisskopf, M. G. (2009). Blood Led Levels and Major Depressive Disorder, Panic Disorder, and Generalized Anxiety Disorder in US Young Adults. Archives of General Psychiatry, 66 (12), 1313–1319.https://doi.org/10.1001/archgenpsychiatry.2009.164
  • 2. Clean Label Project. (2021, February 21). The True Content and Faces BehindAmerica’s Best-Selling Collagen.www.organicconsumers.org/sites/ default/files/collagen_white_paper.pdf
  • 3. Consumer Reports, 2010 (2021, November 30). Health risks of protein drinks - consumer reports. https://www.consumerreports.org/cro/ 2012/04/protein-drinks/index.ht
  • 4. Darwish, W. S., Eldaly, E. A., El-Abbasy, M. T., Ikenaka, Y., Nakayama, S., & Ishizuka, M. (2013). Antibiotic residues in food: the African scenario. Japanese Journal of Veterinary Research, 61, S13-S20.https://doi.org/10.14943/jjvr.61.suppl.s13
  • 5. EFSA. (2012). Cadmium dietary exposure in the European population. EFSA Journal, 10 (1), 2551-37.https://doi.org/10.2903/j.efsa.2012.2551
  • 6. Foster, W., &Raoult, A. (1974). Early descriptions of antibiosis. The Journal of the Royal College of General Practitioners, 24 (149), 889–894.
  • 7. Graham, J.P., Boland, J. J., &Silbergeld, E. (2007). Growth promoting antibiotics in food animal production: an economic analysis. Public Health Report, 122, 79-87.https://doi.org/10.1177/003335490712200111
  • 8. Gworek, B., Dmuchowski, W., & Baczewska-Dąbrowska, A. H. (2020). Mercury in the terrestrial environment: a review. Environmental Sciences Europe, 32, 128.https://doi.org/10.1186 /s12302-020-00401-x
  • 9. Gualerzi, C. O., Brandi, L., Fabbretti, A., & Pon, C. L. (2013). Antibiotics: Targets, Mechanisms and Resistance. John Wiley & Sons.
  • 10. Grund, S. C., Hanusch, K., & Wolf, H. U. (2008). Arsenic and Arsenic Compounds. Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.
  • 11. Keyes, K., Lee, M. D., & Maurer, J. J. (2003). Antibiotics: mode of action, mechanisms of resistance and transfer. In: Torrance ME, Isaacson RE, (Ed.). Microbial Food Safety in Animal Agriculture Current Topics (pp.45-56). Iowa State Press.
  • 12. King, J. C., & Cousins, R. J. (2014). Zinc. In: Ross A. C., Caballero B, Cousins R. J., Tucker K. L., Ziegler T. R., (Ed.). Modern Nutrition in Health and Disease (11th ed., pp. 189-205). Lippincott Williams & Wilkins.
  • 13. Kızılırmak, F. E, Aslan, R., Cetingul, I. S., Gulay, O. Y., & Gulay, M. S. (2021). Risk of Heavy Metal Contamination in Krill Oils. Kocatepe Veterinary Journal, 14 (4), 408-414.https://doi.org/10.30607/kvj.960071
  • 14. Lafarga, T., & Hayes, M. (2014). Bioactive peptides from meat muscle and by-products: Generation, functionality and application as functional ingredients. Meat Science, 98, 227–239. doi: 10.1016/j.meatsci.2014.05.036.
  • 15. Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K., Wertheim, H. F., Sumpradit, N., Vlieghe, E., Hara, G. L., Gould, I. M., Goossens, H., Greko, C., So, A. D., Bigdeli, M., Tomson, G., Woodhouse, W., Ombaka, E., Peralta, A. Q., Qamar, F. N., Mir, F., Kariuki, S., Bhutta, Z. A., Coates, A., Bergstrom, R., Wright, G. D., Brown, E. D., & Cars, O. (2013). Antibiotic resistance-the need for global solutions. The Lancet. Infectious Diseases,13 (12), 1057–1098.https://doi.org/10.1016/S1473-3099(13)70318-9
  • 16. Meena, C., Mengi, S. A., & Deshpande S. G. (1999). Biomedical and industrial applications of collagen. Proceedings of the Indian Academy of Sciences (Chemical Sciences), 111, 319–329. https://doi.org/10.1007/BF02871912
  • 17. Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., & Johnson, S. C. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399 (10325), 629–655.https://doi.org/10.1016/S0140-6736(21)02724-0
  • 18. Nimni, M. (1980). The molecular organization of collagen and its role in determining the biophysical properties of the connective tissues. Biorheology, 17, 51–82.https://doi.org/10.3233/BIR-1980-171-210
  • 19. Organic Consumer Reports, 2020. (2021, November 20). https://www.organicconsumers.org /sites/ default/files /collagen_white_paper.pdf
  • 20. Pavlov, A. l.., Lashev, L., Vachin, I., & Rusev, V. (2008). Residues of antimicrobial drugs in chicken meat and offals. Trakia Journal of Sciences, 6 (1), 23-25.
  • 21. Phillips, I., Casewell, M., Cox, T., De Groot, B., Friis, C., Jones, R., Nightingale, C., Preston, R., &Waddell, J. (2004). Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. Journal ofAntimicrobChemother, 53,28-52.
  • 22. Plum, L. M., Rink, L., &Haase, H. (2010). The essential toxin: impact of zinc on human health. InternationalJournal of Environmental Research and Public Health, 7, 1342-1365. https://doi.org/10.3390/ijerph7041342
  • 23. Pourret, O., Bollinger, J. C., & Hursthouse, A. (2021). Heavy metal: a misused term? Acta Geochemica, 40 (3), 466–471.
  • 24. Ryu, M. S., & Aydemir, T. B. (2020). Zinc. In: B. P. Marriott, D.F. Birt, V.A. Stallings, &A.A. Yates (Ed.). Present Knowledge in Nutrition (11th ed., pp. 393-408). Wiley-Blackwell.
  • 25. Saxena, S. (2015). Microbes in Production of Fine Chemicals (Antibiotics, Drugs, Vitamins, and Amino Acids). In:S. Saxena (Ed.). Applied Microbiology (pp. 83–120). Springer India.
  • 26. Schmidt, M. M., Dornelles, R. C. P., Mello, R. O., Kubota, E. H., Mazutti, M. A., Kempka, A. P., & Demiate, I. M. (2016). Collagen extraction process. International Food Research Journal, 23, 913–922.
  • 27. Sionkowska, A., Adamiak, K., Musiał, K., & Gadomska, M. (2020). Collagen Based Materials in Cosmetic Applications: A Review. Materials, 13, 2417. doi: 10.3390/ma13194217. PMID: 32977407
  • 28. Spencer, H., Norris, C., & Williams, D. (1994). Inhibitory effects of zinc on magnesium balance and magnesium absorption in man. Journal of the American College of Nutrition, 13, 479-84.https://doi.org/10.1080/07315724.1994.10718438
  • 29. Watrous, M. 2020 (2021, September 10). Collagen rising in functional Food formulations,https://www.foodbusinessnews.net/articles/13466-collagen-rising-in-functional-food-formulations
  • 30. Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112, 5649-5654.https://doi.org/10.1073/pnas.1503141112
Veterinary Journal of Mehmet Akif Ersoy University-Cover
  • Başlangıç: 2016
  • Yayıncı: Burdur Mehmet Akif Ersoy Üniversitesi
Sayıdaki Diğer Makaleler

A stereological study on determination of volume of the heart ventricles in female and male quails

Gamze ÇAKMAK, Hüseyin KARADAĞ, Zafer SOYGÜDER, Murat Çetin RAGBETLİ, Mikail KARA, Veysel AKYOL

Evaluation of eye diseases in cats and dogs: a retrospective study: 200 cases (2021-2022)

Özlem ŞENGÖZ ŞİRİN, Mehmet Nur ÇETİN, Batuhan NEYSE

Outcome of preputioplasty in cats with acquired phimosis: Eight cases

Sıtkıcan OKUR, Latif Emrah YANMAZ, Ugur ERSOZ, Mümin Gökhan ŞENOCAK, Ayşe GÖLGELİ BEDİR, Ferda TURGUT, Burak GÜMÜRÇİNLER

Determination of gingival temperatures of dogs with healthy gums by means of a thermal camera

Kürşad YİĞİTARSLAN, Candemir ÖZCAN

Investigation of Possible Heavy Metals and Antibiotic Residues in Commercial Collagen

Devran DEMİR, Özlem Yildiz GÜLAY

A Morphometric Comparison of the Skulls of Akkaraman and Kangal Akkaraman Sheep on a Three-Dimensional Model Using Computed Tomography

Hacer BAŞ EKİCİ, Kamil BEŞOLUK, Nisa BOZBIYIK

The effects of ethanol extract of Punica granatum L. peel on the testis damage induced by diabetes in rats

Ali ÖMÜR, Betül APAYDIN YILDIRIM, Serkan YILDIRIM, Serkan Ali AKARSU

An Investigation of West Nile Virus Infection in Local Wild Birds Species

Mehmet KALE, Kamil ATLI, Nuri MAMAK, Aygül ARSUN, Sibel HASIRCIOĞLU, Yakup YILDIRIM, Yakup Sinan ORTA, Hasbi Sait SALTIK, Oya BULUT

Effect of Use of Potato Chips Waste as a Source of Easily Soluble Carbohydrates in Alfalfa Silage on Silage Quality.

Besime DOĞAN DAŞ, Mehmet AVCI, Aydın DAŞ, Nurcan KIRAR, Mücahit KAHRAMAN, Mehmet Emin AYDEMİR