Sezgisel Yöntemler ile Eğitilmiş Uyarlamalı Sinirsel Bulanık Mantık Sistemlerinin Sınıflandırma Problemlerine Etkisi
ANFIS yapay sinir ağı ve bulanık mantık sistemlerinin kombinasyonu olan bir karar verme mekanizmasıdır. Kural tabanlı olan bu sistemde giriş değerleri ANFIS’ın katmanlı yapısından geçerek bir çıkış değeri üretilir. Sınıflandırma, tahminleme, dinamik sistem kimliklendirme gibi birçok alanda kullanılan bu yapıda kullanılan parametre değerleri son yıllarda sezgisel yöntemler ile bulunmaya çalışılmaktadır. Sezgisel yöntemler sürü tabanlı, fizik tabanlı, kimya tabanlı gibi birçok kategoriye ayrılan optimum aday çözümleri bulmayı amaçlayan yöntemlerdir. Bu çalışmada da sezgisel yöntemlerden olan Cırcır Böceği algoritması, Kaotik haritalı Cırcır Böceği algoritması ve Balina Optimizasyon Algoritması ile eğitilen ANFIS’in sınıflandırma problemleri üzerindeki etkisi karşılaştırılmalı olarak gösterilmeye çalışılmaktadır. Bilindik veri setleri üzerinde yapılan çalışmalarda eğitilen ağın doğruluk oranlarında artış sağladığı görülmektedir. Çalışmanın diğer önemli bir yanı ise Kaotik haritalı Cırcır Böceği algoritmasının ANFIS eğitiminde ilk defa kullanılıyor olmasıdır. Bu sayede araştırmacılara bir fikir vereceği ön görülmektedir.
Effects of Adaptive Neuro-Fuzzy Logic Systems Trained with Heuristic Methods to Classification Problems
ANFIS is a decision-making mechanism that is a combination of artificial neural networks and fuzzy logic problems. In this rule-based system, inputs are passed through the ANFIS layered structure and an output value is generated. This structure is used in many areas such as classification, estimation, dynamic system identification in recent years. Parameters determined by heuristic methods as usual. Heuristic methods are divided into many categories such as swarm-based, physics-based and chemistry based and aim to find optimum candidate solutions. In this study, we tried to comparatively show that the effect on classification problems of ANFIS trained with Cricket Algorithm with Chaos Map, and The Whale Optimization Algorithm which are heuristic methods. It is seen that the studies performed on the known datasets provide an increase in the accuracy of the trained network. Another important aspect of the work is that the Cricket Algorithm with Chaos Map is being used for the first time in ANFIS training. It is anticipated that this will give the researchers an idea.
___
- [1] Ghomsheh V S, Shoorehdeli M A, Teshnehlab M 2007 Training ANFIS structure with modified PSO algorithm in 2007 Mediterranean Conf. on Control & Automation Athens pp. 1-6
- [2] Karaboga D and Kaya E 2014 Training ANFIS using artificial bee colony algorithm for nonlinear dynamic systems identification in 2014 22nd Signal Processing and Communications Applications Conference (SIU) pp. 493–496
- [3] Haznedar B and Kalınlı A 2016 Training ANFIS Using Genetic Algorithm for Dynamic Systems Identification Int. J. of Intell. Sys. and Appl. in Eng. vol. 4 no. 1 pp. 44-47
- [4] Canayaz M and Karcı A 2016 Cricket Behavior-Based Evolutionary Computation Technique in Solving Engineering Optimization Problems Appl. Intell. 44 pp. 362–376
- [5] Canayaz M and Karcı A 2015 A novel approach for image compression based on multi-level image thresholding using discrete wavelet transform and cricket algorithm 23nd Signal Processing and Communications Applications Conference (SIU) Malatya pp. 224-227
- [6] Canayaz M and Demir, M 2016 Veri Kümelemede Yapay Atom Algoritması ve Cırcır Böceği Algoritmasının Karşılaştırılmalı Analizi 4th International Symposium on Innovative Technologies in Engineering and Science (ISITES2016) Antalya Turkey pp. 1230-1239
- [7] Mirjalili S and Lewis A 2016 The Whale Optimization Algorithm Adv. in Eng. Soft, vol. 95 pp. 51-67
- [8] Tanyıldızı E and Cigal T. 2017 Kaotik Haritalı Balina Optimizasyon Algoritmaları Fırat Ünv. Müh. ve Bilim Dergisi vol 29 no 1 pp. 309-319
- [9] Canayaz M and Demir M 2017 Feature selection with the whale optimization algorithm and artificial neural network 2017 Int. Artificial Intell. and Data Processing Symposium (IDAP) pp. 1-5
- [10] Canayaz M and Özdağ R 2018 Training artificial neural network with Chaotic Cricket Algorithm 26th Signal Processing and Communications Applications Conference (SIU) Izmir pp. 1-4
- [11] Jang J S R 1993 ANFIS Adaptive-Network-Based Fuzzy Inference System IEEE Trans Syst Man Cybern vol 23 no 3 pp. 665–685
- [12] Jang J S R, Sun C T and Mizutani E 1997 Neurofuzzy and soft computing Prentice Hall, Upper Saddle River
- [13] Tür R and Balas C E 2010 Belirgin Dalga Yüksekliklerinin Neuro-Fuzzy Yaklaşımı ile Tahmini: Filyos Deniz Yöresi Örneği J. Fac. Eng. Arch. Gazi Univ. vol 25 no 3 pp. 505-510
- [14] Karaboga D and Kaya E 2017 Training ANFIS by using the artificial bee colony algorithm Turk J Elec Eng & Comp Sci vol 25 pp. 1669-1679
- [15] Demirel Ö, Kakilli A and Tektaş M 2010 ANFIS ve Arma Modelleri ile Elektrik Enerjisi Yük Tahmini J. Fac. Eng. Arch. Gazi Univ. vol 25 no 3 pp. 601-610
- [16] Elmas Ç 2016 Yapay Zeka Uygulamaları Seçkin Yayıncılık
- [17] Lyon R J, Stappers B W, Cooper S, Brooke J M and Knowles J D 2016 Fifty Years of Pulsar Candidate Selection: From simple filters to a new principled realtime classification approach, Monthly Notices of the Royal Astronomical Society 459 (1) pp. 1104-1123
- [18] Volker L and Helene D 2013 UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. 2013
- [19] Mangasarian O L and Wolberg W H 1990 Cancer diagnosis via linear programming SIAM News vol 23 no 5 pp 1-18