İmplant Stabilitesi Değerlendirmesinde Model Materyali Olarak Kalsiyum Fosfat Kullanılabilir mi?

Bu çalışmanın amacı kalsiyum fosfat greft materyalinin implant modeli olarak kullanımını değerlendirmekti. Bu prospektif, tek kör, model çalışması Van Yüzüncü Yıl Üniversitesi Diş Hekimliği Fakültesi Ağız Diş ve Çene Cerrahisi kliniğinde Şubat 2023 tarihinde gerçekleştirildi. Kalsiyum fosfat greft model materyali olarak hazırlandı ve Grup 1’deki 2 kalıp 1 saat ve Grup 2’deki 2 kalıp 12 saat sertleşmesi için bekletildi. Rastgele oluşturulan gruplarda 24 adet toplamda 48 implant yuvası oluşturuldu. Sonuçlar % 95’lik güven aralığında, anlamlılık p<0.05 düzeyinde değerlendirildi. 12 saatlik model grubundaki implant yuvalarının drilleme zamanları 1 saatlik model grubundakilerden istatistiksel olarak anlamlı seviyede yüksek saptanmıştır (p<0,01). 12 saatlik model grubundaki implant yuvalarındaki implant yerleştirme torkları 1 saatlik model grubundakilerden istatistiksel olarak anlamlı seviyede yüksek saptanmıştır (p<0,01). Bu çalışmada kalsiyum fosfatın in vitro implant çalışmalarında, implant stabilitesinin değerlendirilmesinde model materyali olarak kullanılabileceği ortaya koyuldu.

Can Calcium Phosphate Be Used as a Model Material for Implant Stability Evaluation?

The aim of this study was to evaluate the use of calcium phosphate graft material as an implant model. This prospective, single-blind, model study was carried out in Van Yüzüncü Yıl University Faculty of Dentistry, Oral and Maxillofacial Surgery clinic in February 2023. Calcium phosphate graft was prepared as the model material and 2 molds in Group 1 were left to set for 1 hour and 2 molds in Group 2 for 12 hours. A total of 48 implant sockets were created in 24 randomly generated groups. The results were evaluated at the 95% confidence interval and the significance level of p<0.05. Drilling times of the implant sockets in the 12-hour model group were found to be statistically significantly higher than those in the 1-hour model group (p<0.01). Implant placement torques in the implant sockets in the 12-hour model group were found to be statistically significantly higher than those in the 1-hour model group (p<0.01). In this study, it was revealed that calcium phosphate can be used as a model material in in vitro implant studies and in the evaluation of implant stability.

___

  • 1. Singh K, Rao J, Afsheen T, Tiwari B. Survival rate of dental implant placement by conventional or flapless surgery in controlled type 2 diabetes mellitus patients: A systematic review. Indian J Dent Res. 2019;30(4):600- 611.
  • 2. Jivraj S, Chee W. Rationale for dental implants. Br Dent J. 2006;200(12):661-665.
  • 3. Setzer FC, Kim S. Comparison of Long-term Survival of Implants and Endodontically Treated Teeth. Journal of Dental Research. 2014;93(1):1926.
  • 4. Salvi, G. E.,Monje, A., &Tomasi, C. Longterm biological compli- cations of dental implants placed either inpristineor in augmentedsites: A systematic review and metaanalysis. Clin Oral Implants Res.2018;29(Suppl 16):294–310.
  • 5. Eriksson R, Albrektsson T: Temperature thres holds for heat- induced bone tissue injury: A vital-microscopic study in the rabbit. J Prosthet Dent. 1983;50:101.
  • 6. Ercoli C, Funkenbusch PD, Lee H-J, Moss ME, Graser GN. The influence of drill wear on cutting efficiency and heat production during osteotomy preparation for dental implants: a study of drill dura- bility. Int J Oral Maxillofac Implants.2004;19:335–349.
  • 7.Sharawy M, Misch CE, Weller N, Tehemar S. Heat generation during implant drilling: The significance of motor speed. J Oral Maxillofac Surg 2002;60:1160‐1169.
  • 8(12). Watanbe F, Tawada Y, Komatsu S, Hata Y. Heatdistri- bution in bone during preparation of implantsites: heat analysis by real-time thermography. Int J Oral Maxillofac Implants.1992;7:212–219
  • 9. Möhlhenrich SC, Modabber A, Steiner T, Mitchell DA, Hölzle F. Heat generation and drill wear during dental implant site preparation: systematic review. Br J Oral Maxillofac Surg. 2015;53(8): 679–689.
  • 10. Reingewirtz Y, Szmukler-Moncler S, Senger B: Influence of different parameters on bone heating and drilling in implantology. Clin Oral Implant Res. 1997;8:189.
  • 11. Yeniyol S, Jimbo R, Marin C, Tovar N, Janal MN, Coelho PG. The effect of drilling speed on early bone healing to oral implants. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116:550-555.
  • 12. Iyer S, Weiss C, Mehta A. Effects of drill speed on heat production and the rate and quality of bone formation in dental implant osteotomies, part I: relationship between drill speed and heat production. Int J Prosthodont. 1997;10:411-414.
  • 13.Gaspar J, Borrecho G, Oliveira P, Salvado F, Martinsdos Santos J. Osteotomy at low-speed drilling without irrigation versus high-speed drilling with irrigation: an experimental study. Acta Med Port. 2013;26:231-6.
  • 14.Möhlhenrich SC, Kniha K, Heussen N, Hölzle F, Modabber A. Effects on primary stability of three different techniques for implant site preparation in synthetic bone models of different densities. Br J Oral Maxillofac Surg. 2016;54(9):980-986.
  • 15. Pesqueira AA, Goiato MC, Filho HG, et al. Use of stres analysis methods to evaluate the biomechanics of oral rehabilitation with implants. J Oral Implantol. 2014;40(2):217- 228.
  • 16. Khasnis N, Dhatrak P, Kurup A. Materials Today: Proceedings. 2021;39:114–120.
  • 17. Palissery V, Taylor M, Browne M. Fatigue Characterization of a Polymerfoamtouse as a cancellous bone analog material in the assessment of orthopaedic devices. J. Mater. Sci. Mater. Med. 2004;15:61-67.
  • 18. Bicudo P, Reis J, Deus AM, Reis L, Vaz MF. Performance evaluation of dental implants: An experimental and numerical simulation study. Theor. Appl. Fract. Mech. 2016;85:74-83.
  • 19. Fu Q, Rahaman MN, Bal BS, Brown RF, Day DE. Mechanicaland in vitro performance of 13–93 bioactive glasss caffolds prepared by a polymerfoamreplication technique. Acta Biomater. 2008:4;1854-1864.
  • 20. Tcacencu I, Rodrigues N, Alharbi N, Benning M, Toumpaniari S, Mancuso E, Marshall M, Bretcanu O, Birch M, McCaskie A, Dalgarno K. Osseointegration of porous apatitewollastonite and poly (lacticacid) composite structures createdusing 3D printing techniques Mater. Sci. Eng., C. 2018;90:1-7.
  • 21. Nanci A. Ten Cate's Oral Histology: Development, Structure, and Function. 8th edition, St. Louis: Elsevier, 2013.
  • 22. Karageorgiou V and Kaplan D. Porosity of 3D biomaterial scaffold sand osteogenesis. Biomaterials. 2005;26.5474-5491.
  • 23. Cooper DM, Matyas JR, Katzenberg MA and Hallgrimsson B. Comparison of micro computed tomographic and microradiographic measurements of cortical bone porosity. Calcif. TissueInt. 2004;74:437-447.
  • 24. Chen QZ, Boccaccini AR, Zhang HB, Wang DZ and Edirisinghe MJ. Improved mechanical reliability of bone tissue engineering ( Zirconia) scaffolds by electrospraying. J. Am. Ceram. Soc. 2006;89:1534-1539.
  • 25. Boccaccini A, Ma PX. Tissue Engineering Using Ceramics and Polymers. Second edition, Amsterdam: Elsevier, 2014.
  • 26. Almela T, Brook I, Khoshroo K, Rasoulianboroujeni M, Fahimipour F, Tahriri M, Dashtimoghadam E, El-Awa A, Tayebi L, Moharamzadeh K. Simulation of corticocancellous bone structureby 3D printing of bilayer calcium phosphate-based scaffolds. Bioprinting. 2017;6:1-7.